pauhidalgoo commited on
Commit
1ba00d5
verified
1 Parent(s): 6db31c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -161
README.md CHANGED
@@ -1,201 +1,190 @@
1
  ---
2
  library_name: transformers
 
 
 
 
3
  tags:
4
- - trl
 
 
5
  - sft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
13
 
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
 
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
57
 
58
- [More Information Needed]
59
 
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
 
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
  ### Training Data
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
 
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
 
99
- #### Speeds, Sizes, Times [optional]
100
 
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
 
 
 
 
 
 
104
 
105
- ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
 
173
- ## Citation [optional]
174
 
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
176
 
177
- **BibTeX:**
178
 
179
- [More Information Needed]
180
 
181
- **APA:**
 
 
 
 
182
 
183
- [More Information Needed]
184
 
185
- ## Glossary [optional]
186
 
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
188
 
189
- [More Information Needed]
190
 
191
- ## More Information [optional]
 
 
 
192
 
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
196
 
197
- [More Information Needed]
 
 
 
 
198
 
199
- ## Model Card Contact
 
 
200
 
201
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - pauhidalgoo/patufet-conversa
5
+ language:
6
+ - ca
7
  tags:
8
+ - catalan
9
+ - language-model
10
+ - transformer
11
  - sft
12
+ model-index:
13
+ - name: cucafera-instruct
14
+ results:
15
+ - task:
16
+ type: language-understanding
17
+ name: arc_ca_challenge
18
+ dataset:
19
+ name: arc_ca_challenge
20
+ type: catalan_bench
21
+ metrics:
22
+ - name: Accuracy
23
+ type: acc
24
+ value: 0.2295
25
+ - name: Normalized Accuracy
26
+ type: acc_norm
27
+ value: 0.2534
28
+ source:
29
+ name: Eleuther AI LM Evaluation Harness
30
+ url: https://github.com/EleutherAI/lm-evaluation-harness
31
+ - task:
32
+ type: language-understanding
33
+ name: arc_ca_easy
34
+ dataset:
35
+ name: arc_ca_easy
36
+ type: catalan_bench
37
+ metrics:
38
+ - name: Accuracy
39
+ type: acc
40
+ value: 0.4238
41
+ - name: Normalized Accuracy
42
+ type: acc_norm
43
+ value: 0.4108
44
+ source:
45
+ name: Eleuther AI LM Evaluation Harness
46
+ url: https://github.com/EleutherAI/lm-evaluation-harness
47
+ - task:
48
+ type: question-answering
49
+ name: catalanqa
50
+ dataset:
51
+ name: catalanqa
52
+ type: catalan_bench
53
+ metrics:
54
+ - name: Exact Match
55
+ type: exact_match
56
+ value: 0.0037
57
+ - name: F1 Score
58
+ type: f1
59
+ value: 0.0991
60
+ source:
61
+ name: Eleuther AI LM Evaluation Harness
62
+ url: https://github.com/EleutherAI/lm-evaluation-harness
63
+ - task:
64
+ type: language-understanding
65
+ name: copa_ca
66
+ dataset:
67
+ name: copa_ca
68
+ type: catalan_bench
69
+ metrics:
70
+ - name: Accuracy
71
+ type: acc
72
+ value: 0.614
73
+ source:
74
+ name: Eleuther AI LM Evaluation Harness
75
+ url: https://github.com/EleutherAI/lm-evaluation-harness
76
+ - task:
77
+ type: machine-translation
78
+ name: flores_ca
79
+ dataset:
80
+ name: flores_ca
81
+ type: flores
82
+ metrics:
83
+ - name: BLEU
84
+ type: bleu
85
+ value: 0.5934
86
+ source:
87
+ name: Eleuther AI LM Evaluation Harness
88
+ url: https://github.com/EleutherAI/lm-evaluation-harness
89
+ license: apache-2.0
90
+ base_model:
91
+ - pauhidalgoo/cucafera
92
+ - pauhidalgoo/cucafera-instruct
93
  ---
94
 
95
+ # Model Card for cucafera 馃敟馃惒 (Instruct Model)
 
 
 
96
 
97
 
98
+ This document describes **cucafera (Chat Model)**, a Catalan Large Language Model (LLM) fine-tuned to follow **multi-turn** instructions and generate text in Catalan. Built upon the instruct model, it uses a multi-turn dataset to enhance it's conversational capabilities.
99
  ## Model Details
100
 
101
  ### Model Description
102
 
103
+ **cucafera (Chat Model)** is a 244-million parameter transformer-based language model inspired by the LLAMA architecture (notably LLAMA3). Despite its relatively small size compared to many contemporary models, it is optimized for generating coherent and contextually relevant text in Catalan.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ - **Model Size:** 244M parameters
106
+ - **Architecture:** Transformer-based (LLAMA-inspired) with 30 layers
107
+ - **Embedding Size:** 768
108
+ - **Attention Mechanism:** 4 key/value heads and 8 query heads (using Grouped Query Attention - GQA)
109
+ - **Context Length:** 2048 tokens
110
+ - **Tokenizer:** Byte-Pair Encoding (BPE) with a vocabulary size of 65,536
111
+ - **Activation Function:** GeGLU
112
 
113
+ ## Chat Fine-Tuning
114
 
115
+ The chat version of **cucafera** has been fine-tuned on top of the instruct version of cucafera. It follows the ChatML format for conversation, for example:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
+ ```
118
+ <|im_start|>user Fes un poema <|im_end|> <|im_start|>assistant
119
+ ```
120
 
121
  ### Training Data
122
 
123
+ The base model was pre-trained using the [patufet-pretrain](https://huggingface.co/datasets/pauhidalgoo/patufet-pretrain) dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
+ The fine-tuning data utilized a mix of instruction datasets from the [patufet](https://huggingface.co/collections/pauhidalgoo/patufet-66ca6dd3888e99a28dd616ae) collection.
126
 
127
+ The chat data consists in the [patufet-conversa](https://huggingface.co/datasets/pauhidalgoo/patufet-conversa) dataset.
128
 
129
+ ### Fine-tunning Procedure
130
 
131
+ The model was fine-tuned with the following setup:
132
+ - **Total fine-tunning steps:** 8400
133
+ - **Per device train batch size:** 1
134
+ - **Sequence Length:** 2048
135
+ - **Learning rate:** 3e-5
136
+ - **Optimizer:** AdamW
137
+ - **Weight decay:** 0.01
138
+ - **Epochs**: 3
139
 
140
+ Different commits represent different fine-tunning procedures: we experimented with different data mixes, epochs, datasets...
141
 
142
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
+ The cucafera (Chat Model) is designed for:
145
 
146
+ - **Multi-turn** Conversational agents and chatbots in Catalan.
147
+ - Task-specific applications such as summarization, translation (within Catalan), and creative writing.
148
+ - Educational and experimental research into instruction-following LLMs.
149
+ - Creative content generation, like poems or stories
150
 
151
+ However, due to its limited size, it is not able to provide correct factual information and you must be aware of this fact when using this model.
152
 
153
+ ### Out-of-Scope Uses
154
 
155
+ - **High-Stakes Applications:**
156
+ The model is not recommended for uses where extremely high factual accuracy is required or where outputs could have significant real-world consequences.
157
+ - **Non-Catalan Tasks:**
158
+ Since the model is exclusively trained on Catalan text, it is not suited for tasks in other languages without further training or fine-tuning.
159
+ - **Sensitive or safety-critical uses:** It has not undergone RLHF/DPO tuning, so outputs should be reviewed carefully.
160
 
 
161
 
162
+ ## Bias, Risks, and Limitations
163
 
164
+ - The model has **no instruction tuning**, so it may not follow prompts effectively.
165
+ - It **only understands Catalan**, meaning it is unsuitable for multilingual applications.
166
+ - Due to its **small size (244M parameters)**, its knowledge and reasoning capabilities are limited.
167
+ - It was trained on **a limited dataset**, which may introduce biases in its outputs.
168
 
169
+ ### Recommendations
170
 
171
+ - The goal of this model is educational. You are encouraged to train your own model.
172
+ - If used in production, **human review** of its outputs is recommended.
173
+ - Fine-tuning on task-specific data can **improve accuracy** and **mitigate biases**.
174
+ - Users should be cautious when using it in **sensitive or high-stakes applications**.
175
 
176
+ ## Use the Chat Model
177
 
178
+ You can use the chat model via huggingface's transformers library. Make sure to specify the **ChatML format**.
179
 
180
+ ```
181
+ <|im_start|>user
182
+ Qu猫 茅s la intel路lig猫ncia artificial? <|im_end|>
183
+ <|im_start|>assistant', 'content': "Ets un assistent d'intel路lig猫ncia artificial que pot ajudar els usuaris amb problemes matem脿tics, especialment amb equacions."}, {'role': 'user', 'content': "Hola! M'agradaria aprendre m茅s sobre les equacions algebraiques. Pots explicar-me com funcionen?"}, {'role': 'assistant', 'content': "Hola! Les equacions algebraiques s贸n una forma de resoldre problemes geom猫trics complexos, on cada element t茅 un valor definit. Per exemple, si tenim l'equaci贸: (x + 1) / 2 = 10, el resultat ser脿 5 i el seu valor
184
+ ```
185
 
186
+ ### Acknowledgements
187
+ This model was developed as an experimental project, inspired by Karpathy's [NanoGPT Series](https://github.com/karpathy/nanoGPT).
188
+ My colleague [Roger Baiges](https://huggingface.co/baiges) also trained his own [CatGPT](https://huggingface.co/baiges/CatGPT).
189
 
190
+ For more details, updates, or to contribute to the project, please visit the [GitHub repository](https://github.com/pauhidalgoo/cucafera)