from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from flask import Flask, request, jsonify | |
app = Flask(__name__) | |
# Load model and tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
def predict(): | |
data = request.json | |
text = data['text'] | |
# Tokenize and encode the input text | |
inputs = tokenizer.encode(text, return_tensors='pt') | |
outputs = model.generate(inputs, max_length=50) # Adjust max_length as needed | |
# Decode the output tokens to string | |
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return jsonify({'result': text_output}) | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=3000) | |