pikhan's picture
uploading some code files
b5f1696 verified
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
def load_model_and_tokenizer(model_path):
model = model = GPT2LMHeadModel.from_pretrained(model_path)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
return model, tokenizer
def generate_text(input_text, model, tokenizer):
# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# Generate output from the model
output = model.generate(input_ids, max_length=75, num_return_sequences=1)
# Decode and print the output
return tokenizer.decode(output[0], skip_special_tokens=True)
if __name__ == "__main__":
model_path = "./saved_gpt2_medium_nice_model_directory" # Adjust the path as needed
model, tokenizer = load_model_and_tokenizer(model_path)
# Ensure model is in eval mode
model.eval()
print("Type 'exit' to quit.")
while True:
input_text = input("Enter your text: ")
if input_text.lower() == 'exit':
break
response = generate_text(input_text, model, tokenizer)
print("Generated text:", response)