from openvino.runtime import Core import numpy as np # Initialize the OpenVINO runtime Core ie = Core() # Load and compile the model for the CPU device compiled_model = ie.compile_model(model='../ovc_output/converted_model.xml', device_name="CPU") # Prepare input: a non tokenized example just for examples sake input_ids = np.random.randint(0, 50256, (1, 10)) # Create a dictionary for the inputs expected by the model inputs = {"input_ids": input_ids} # Create an infer request and start synchronous inference result = compiled_model.create_infer_request().infer(inputs=inputs) # Access output tensor data directly from the result using the appropriate output key output = result['outputs'] print("Inference results:", output)