import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer def load_model_and_tokenizer(model_path): model = model = GPT2LMHeadModel.from_pretrained(model_path) tokenizer = GPT2Tokenizer.from_pretrained(model_path) return model, tokenizer def generate_text(input_text, model, tokenizer): # Encode the input text input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate output from the model output = model.generate(input_ids, max_length=75, num_return_sequences=1) # Decode and print the output return tokenizer.decode(output[0], skip_special_tokens=True) if __name__ == "__main__": model_path = "./saved_gpt2_medium_nice_model_directory" # Adjust the path as needed model, tokenizer = load_model_and_tokenizer(model_path) # Ensure model is in eval mode model.eval() print("Type 'exit' to quit.") while True: input_text = input("Enter your text: ") if input_text.lower() == 'exit': break response = generate_text(input_text, model, tokenizer) print("Generated text:", response)