File size: 8,149 Bytes
d698433
 
 
 
 
b677094
 
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352817f
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352817f
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352817f
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352817f
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
 
352817f
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352817f
 
c91262b
352817f
 
5b9d843
d698433
 
 
 
 
 
4ec39ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113a9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91262b
 
 
 
 
 
 
 
 
 
 
 
 
352817f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
license: apache-2.0
language:
- en
library_name: transformers
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
pipeline_tag: text-generation
model-index:
- name: Bellatrix-1.5B-xElite
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 19.64
      name: averaged accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBellatrix-1.5B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 9.49
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBellatrix-1.5B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 12.61
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBellatrix-1.5B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.8
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBellatrix-1.5B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.44
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBellatrix-1.5B-xElite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 7.3
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBellatrix-1.5B-xElite
      name: Open LLM Leaderboard
tags:
- qwen
- qwq
---
<pre align="center">
 ____  ____  __    __      __   ____  ____  ____  _  _ 
(  _ \( ___)(  )  (  )    /__\ (_  _)(  _ \(_  _)( \/ )
 ) _ < )__)  )(__  )(__  /(__)\  )(   )   / _)(_  )  ( 
(____/(____)(____)(____)(__)(__)(__) (_)\_)(____)(_/\_)
</pre>

# **Bellatrix-1.5B-xElite**

Bellatrix-1.5B-xElite is based on a reasoning-based model designed for the QWQ synthetic dataset entries. The pipeline's instruction-tuned, text-only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. These models outperform many of the available open-source options. Bellatrix is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions utilize supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF).

# **Quickstart with Transformers**

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Bellatrix-1.5B-xElite"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

# **Intended Use:**

1. **Multilingual Dialogue Systems:**
   - Designed for conversational AI applications, capable of handling dialogue across multiple languages.
   - Useful in customer service, chatbots, and other dialogue-centric use cases.

2. **Reasoning and QWQ Dataset Applications:**
   - Optimized for tasks requiring logical reasoning and contextual understanding, particularly in synthetic datasets like QWQ.

3. **Agentic Retrieval:**
   - Supports retrieval-augmented generation tasks, helping systems fetch and synthesize information effectively.

4. **Summarization Tasks:**
   - Excels in summarizing long or complex text while maintaining coherence and relevance.

5. **Instruction-Following Tasks:**
   - Can execute tasks based on specific user instructions due to instruction-tuning during training.

6. **Language Generation:**
   - Suitable for generating coherent and contextually relevant text in various domains and styles.

# **Limitations:**

1. **Synthetic Dataset Bias:**
   - Optimization for QWQ and similar datasets may make the model less effective on real-world or less structured data.

2. **Data Dependency:**
   - Performance may degrade on tasks or languages not well-represented in the training dataset.

3. **Computational Requirements:**
   - The optimized transformer architecture may demand significant computational resources, especially for fine-tuning or large-scale deployments.

4. **Potential Hallucinations:**
   - Like most auto-regressive models, it may generate plausible-sounding but factually incorrect or nonsensical outputs.

5. **RLHF-Specific Biases:**
   - Reinforcement Learning with Human Feedback (RLHF) can introduce biases based on the preferences of the annotators involved in the feedback process.

6. **Limited Domain Adaptability:**
   - While effective in reasoning and dialogue tasks, it may struggle with highly specialized domains or out-of-distribution tasks.

7. **Multilingual Limitations:**
   - Although optimized for multilingual use, certain low-resource languages may exhibit poorer performance compared to high-resource ones.

8. **Ethical Concerns:**
   - May inadvertently generate inappropriate or harmful content if safeguards are not applied, particularly in sensitive applications.

9. **Real-Time Usability:**
   - Latency in inference time could limit its effectiveness in real-time applications or when scaling to large user bases.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Bellatrix-1.5B-xElite-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FBellatrix-1.5B-xElite&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |     9.55|
|IFEval (0-Shot)    |    19.64|
|BBH (3-Shot)       |     9.49|
|MATH Lvl 5 (4-Shot)|    12.61|
|GPQA (0-shot)      |     3.80|
|MuSR (0-shot)      |     4.44|
|MMLU-PRO (5-shot)  |     7.30|