--- license: apache-2.0 datasets: - mcimpoi/minc-2500_split_1 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - MINC - '2500' - Classification - Materials - Leather - Brick - Metal - Skin - Food - Stone --- ![14.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xVgE0XmLAzc-7BPVXXDNZ.png) # **Minc-Materials-23** > **Minc-Materials-23** is a visual material classification model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies images into 23 common material types based on visual features, ideal for applications in material recognition, construction, retail, robotics, and beyond. ```py Classification Report: precision recall f1-score support brick 0.8325 0.8278 0.8301 2125 carpet 0.7318 0.7539 0.7427 2125 ceramic 0.6484 0.6579 0.6531 2125 fabric 0.6248 0.5666 0.5943 2125 foliage 0.9102 0.9205 0.9153 2125 food 0.8588 0.8899 0.8740 2125 glass 0.7799 0.6753 0.7238 2125 hair 0.9267 0.9520 0.9392 2125 leather 0.7464 0.7826 0.7641 2125 metal 0.6491 0.6626 0.6558 2125 mirror 0.7668 0.6127 0.6811 2125 other 0.8637 0.8198 0.8411 2125 painted 0.6813 0.8391 0.7520 2125 paper 0.7393 0.7261 0.7327 2125 plastic 0.6142 0.5304 0.5692 2125 polishedstone 0.7435 0.7449 0.7442 2125 skin 0.8995 0.9228 0.9110 2125 sky 0.9584 0.9751 0.9666 2125 stone 0.7567 0.7289 0.7426 2125 tile 0.7108 0.6847 0.6975 2125 wallpaper 0.7825 0.8193 0.8005 2125 water 0.8993 0.8781 0.8886 2125 wood 0.6281 0.7685 0.6912 2125 accuracy 0.7713 48875 macro avg 0.7719 0.7713 0.7700 48875 weighted avg 0.7719 0.7713 0.7700 48875 ``` ![download (2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/QNv3UQpQg6RkPLXaUFE2g.png) The model categorizes images into the following 23 classes: - **0:** brick - **1:** carpet - **2:** ceramic - **3:** fabric - **4:** foliage - **5:** food - **6:** glass - **7:** hair - **8:** leather - **9:** metal - **10:** mirror - **11:** other - **12:** painted - **13:** paper - **14:** plastic - **15:** polishedstone - **16:** skin - **17:** sky - **18:** stone - **19:** tile - **20:** wallpaper - **21:** water - **22:** wood --- # **Run with Transformers 🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Minc-Materials-23" # Replace with your actual model path model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { 0: "brick", 1: "carpet", 2: "ceramic", 3: "fabric", 4: "foliage", 5: "food", 6: "glass", 7: "hair", 8: "leather", 9: "metal", 10: "mirror", 11: "other", 12: "painted", 13: "paper", 14: "plastic", 15: "polishedstone", 16: "skin", 17: "sky", 18: "stone", 19: "tile", 20: "wallpaper", 21: "water", 22: "wood" } def classify_material(image): """Predicts the material type present in the uploaded image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))} return predictions # Gradio interface iface = gr.Interface( fn=classify_material, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Material Prediction Scores"), title="Minc-Materials-23", description="Upload an image to identify the material type (e.g., brick, wood, plastic, metal, etc.)." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use** **Minc-Materials-23** is tailored for: - **Architecture & Construction:** Material identification from site photos or plans. - **Retail & Inventory:** Recognizing product materials in e-commerce. - **Robotics & AI Vision:** Enabling object material perception. - **Environmental Monitoring:** Detecting materials in natural vs. urban environments. - **Education & Research:** Teaching material properties and classification techniques.