--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 031b6c4b-82ae-476a-94e9-fdbac2afc6ba results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ae3eb22d60dc8854_train_data.json ds_type: json format: custom path: /workspace/input_data/ae3eb22d60dc8854_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: prxy5605/031b6c4b-82ae-476a-94e9-fdbac2afc6ba hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/ae3eb22d60dc8854_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a0f8944d-868c-4841-8f21-f5f704129914 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a0f8944d-868c-4841-8f21-f5f704129914 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 031b6c4b-82ae-476a-94e9-fdbac2afc6ba This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.7298 | | 9.0589 | 0.0011 | 17 | 2.2035 | | 8.141 | 0.0023 | 34 | 2.0627 | | 8.1392 | 0.0034 | 51 | 2.0408 | | 8.0176 | 0.0045 | 68 | 1.9837 | | 7.6978 | 0.0057 | 85 | 1.9581 | | 8.7394 | 0.0068 | 102 | 1.9540 | | 7.6776 | 0.0079 | 119 | 1.9250 | | 7.1961 | 0.0091 | 136 | 1.9074 | | 7.0944 | 0.0102 | 153 | 1.8987 | | 7.3218 | 0.0113 | 170 | 1.8942 | | 7.2723 | 0.0125 | 187 | 1.8919 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1