Commit
·
38e5267
1
Parent(s):
e86e3b2
Delete x1_ITF_SkinDiffDetail_Lite_v1.yml
Browse files
x1_ITF_SkinDiffDetail_Lite_v1.yml
DELETED
@@ -1,238 +0,0 @@
|
|
1 |
-
# python train.py -opt options/sr/x1_ITF_SkinDiffDetail_Lite_v1.yml
|
2 |
-
name: x1_ITF_SkinDiffDetail_Lite_v1
|
3 |
-
# the name that defines the experiment and the directory that will be created in the experiments directory.
|
4 |
-
# name: debug_001_template # use the "debug" or "debug_nochkp" prefix in the name to run a test session and check everything is working. Does validation and state saving every 8 iterations. Remove "debug" to run the real training session.
|
5 |
-
use_tb_logger: false
|
6 |
-
# wheter to enable Tensorboard logging or not. Output will be saved in: traiNNer/tb_logger/
|
7 |
-
model: sr
|
8 |
-
# the model training strategy to be used. Depends on the type of model, from: https://github.com/victorca25/traiNNer/tree/master/codes/models
|
9 |
-
scale: 1 # the scale factor that will be used for training for super-resolution cases. Default is "1".
|
10 |
-
gpu_ids: [0] # the list of `CUDA_VISIBLE_DEVICES` that will be used during training, ie. for two GPUs, use [0, 1]. The batch size should be a multiple of the number of 'gpu_ids', since images will be distributed from the batch to each GPU.
|
11 |
-
use_amp: true # select to use PyTorch's Automatic Mixed Precision package to train in low-precision FP16 mode (lowers VRAM requirements).
|
12 |
-
use_swa: false # select to use Stochastic Weight Averaging
|
13 |
-
use_cem: false # select to use CEM during training. https://github.com/victorca25/traiNNer/tree/master/codes/models/modules/architectures/CEM
|
14 |
-
|
15 |
-
# Dataset options:
|
16 |
-
datasets: # configure the datasets
|
17 |
-
train: # the stage the dataset will be used for (training)
|
18 |
-
name: x1_ITF_SkinDiffDetail_Lite_v1 # the name of your dataset (only informative)
|
19 |
-
mode: aligned
|
20 |
-
# dataset mode: https://github.com/victorca25/traiNNer/tree/master/codes/data
|
21 |
-
dataroot_HR: [
|
22 |
-
#'K:/TRAINING/data/Skin_Diff2Nrml/hr_clean_tiles/'
|
23 |
-
'../datasets/Skin_DiffDetail/hr/'
|
24 |
-
]
|
25 |
-
dataroot_LR: [
|
26 |
-
#'K:/TRAINING/data/Skin_Diff2Nrml/lr_clean_tiles/'
|
27 |
-
'../datasets/Skin_DiffDetail/lr_soft/'
|
28 |
-
] # low resolution images
|
29 |
-
subset_file: null
|
30 |
-
use_shuffle: true
|
31 |
-
znorm: false
|
32 |
-
n_workers: 8
|
33 |
-
batch_size: 12
|
34 |
-
virtual_batch_size: 12
|
35 |
-
preprocess: crop
|
36 |
-
crop_size: 64
|
37 |
-
image_channels: 3
|
38 |
-
|
39 |
-
# Color space conversion
|
40 |
-
# color: 'y'
|
41 |
-
# color_LR: 'y'
|
42 |
-
# color_HR: 'y'
|
43 |
-
|
44 |
-
# LR and HR modifiers.
|
45 |
-
# aug_downscale: 0.2
|
46 |
-
# shape_change: reshape_lr
|
47 |
-
|
48 |
-
# Enable random downscaling of HR images (will fix LR pair to correct size)
|
49 |
-
hr_downscale: true
|
50 |
-
hr_downscale_types: [0, 3]
|
51 |
-
hr_downscale_amount: [1, 2, 4]
|
52 |
-
# #pre_crop: true
|
53 |
-
|
54 |
-
# Presets and on the fly (OTF) augmentations
|
55 |
-
#augs_strategy: combo
|
56 |
-
#add_blur_preset: custom_blur
|
57 |
-
#add_resize_preset: custom_resize
|
58 |
-
#add_noise_preset: custom_noise
|
59 |
-
#aug_downscale: 0.2
|
60 |
-
resize_strat: pre
|
61 |
-
|
62 |
-
# On the fly generation of LR:
|
63 |
-
# dataroot_kernels: 'KERNEL PATH !!!! CHANGE THIS OR COMMENT OUT'
|
64 |
-
#lr_downscale: false
|
65 |
-
#lr_downscale_types: ["linear", "bicubic", "nearest_aligned"]
|
66 |
-
|
67 |
-
# Rotations augmentations:
|
68 |
-
use_flip: true
|
69 |
-
use_rot: true
|
70 |
-
use_hrrot: true
|
71 |
-
|
72 |
-
# Noise and blur augmentations:
|
73 |
-
#lr_blur: true
|
74 |
-
#lr_blur_types: {sinc: 0.2, iso: 0.2, ansio2: 0.4, sinc2: 0.2, clean: 3}
|
75 |
-
#noise_data: 'K:/TRAINING/traiNNer/noise_patches/'
|
76 |
-
#lr_noise: true
|
77 |
-
#lr_noise_types: {camera: 0.1, jpeg: 0.8, clean: 3}
|
78 |
-
#lr_noise2: false
|
79 |
-
#lr_noise_types2: {jpeg: 1, webp: 0, clean: 2, camera: 2}
|
80 |
-
#hr_noise: false
|
81 |
-
#hr_noise_types: {gaussian: 1, clean: 4}
|
82 |
-
|
83 |
-
# Color augmentations
|
84 |
-
# lr_fringes: false
|
85 |
-
# lr_fringes_chance: 0.4
|
86 |
-
# auto_levels: HR
|
87 |
-
# rand_auto_levels: 0.7
|
88 |
-
#lr_unsharp_mask: true
|
89 |
-
#lr_rand_unsharp: 0.7
|
90 |
-
# hr_unsharp_mask: true
|
91 |
-
# hr_rand_unsharp: 1
|
92 |
-
|
93 |
-
# Augmentations for classification or (maybe) inpainting networks:
|
94 |
-
# lr_cutout: false
|
95 |
-
# lr_erasing: false
|
96 |
-
|
97 |
-
#val:
|
98 |
-
#name: val_set14_part
|
99 |
-
#mode: aligned
|
100 |
-
#dataroot_B: '../datasets/val/hr'
|
101 |
-
#dataroot_A: '../datasets/val/lr'
|
102 |
-
|
103 |
-
#znorm: false
|
104 |
-
|
105 |
-
# Color space conversion:
|
106 |
-
# color: 'y'
|
107 |
-
# color_LR: 'y'
|
108 |
-
# color_HR: 'y'
|
109 |
-
|
110 |
-
|
111 |
-
path:
|
112 |
-
root: '../'
|
113 |
-
pretrain_model_G: '../experiments/pretrained_models/1x_DIV2K-Lite_SpongeBC1-Lite_interp.pth'
|
114 |
-
# pretrain_model_D: 'K:/TRAINING/data/models/x1_ITF_SkinDiff2Nrm_Lite_v3_208500_D.pth'
|
115 |
-
resume_state: '../experiments/x1_ITF_SkinDiffDetail_Lite_v1/training_state/latest.state'
|
116 |
-
|
117 |
-
# Generator options:
|
118 |
-
network_G: esrgan-lite # configurations for the Generator network
|
119 |
-
|
120 |
-
|
121 |
-
# Discriminator options:
|
122 |
-
network_D:
|
123 |
-
# ESRGAN (default)| PPON:
|
124 |
-
which_model_D: multiscale # discriminator_vgg_128 | discriminator_vgg | discriminator_vgg_128_fea (feature extraction) | patchgan | multiscale
|
125 |
-
norm_type: batch
|
126 |
-
act_type: leakyrelu
|
127 |
-
mode: CNA # CNA | NAC
|
128 |
-
nf: 32
|
129 |
-
in_nc: 3
|
130 |
-
nlayer: 3 # only for patchgan and multiscale
|
131 |
-
num_D: 3 # only for multiscale
|
132 |
-
|
133 |
-
train:
|
134 |
-
# Optimizer options:
|
135 |
-
optim_G: adamp
|
136 |
-
optim_D: adamp
|
137 |
-
|
138 |
-
# Schedulers options:
|
139 |
-
lr_scheme: MultiStepLR
|
140 |
-
lr_steps_rel: [50000, 100000, 200000, 300000]
|
141 |
-
lr_gamma: 0.5
|
142 |
-
|
143 |
-
# For SWA scheduler
|
144 |
-
swa_start_iter_rel: 0.05
|
145 |
-
swa_lr: 1e-4
|
146 |
-
swa_anneal_epochs: 10
|
147 |
-
swa_anneal_strategy: "cos"
|
148 |
-
|
149 |
-
# Losses:
|
150 |
-
pixel_criterion: l1 # pixel (content) loss
|
151 |
-
pixel_weight: 0.05
|
152 |
-
feature_criterion: l1 # feature loss (VGG feature network)
|
153 |
-
feature_weight: 0.3
|
154 |
-
cx_type: contextual # contextual loss
|
155 |
-
cx_weight: 1
|
156 |
-
cx_vgg_layers: {conv_3_2: 1, conv_4_2: 1}
|
157 |
-
#hfen_criterion: l1 # hfen
|
158 |
-
#hfen_weight: 1e-6
|
159 |
-
#grad_type: grad-4d-l1 # image gradient loss
|
160 |
-
#grad_weight: 4e-1
|
161 |
-
# tv_type: normal # total variation
|
162 |
-
# tv_weight: 1e-5
|
163 |
-
# tv_norm: 1
|
164 |
-
ssim_type: ssim # structural similarity
|
165 |
-
ssim_weight: 0.05
|
166 |
-
lpips_weight: 0.25 # [.25] perceptual loss
|
167 |
-
lpips_type: net-lin
|
168 |
-
lpips_net: squeeze
|
169 |
-
|
170 |
-
# Experimental losses
|
171 |
-
# spl_type: spl # spatial profile loss
|
172 |
-
# spl_weight: 0.1
|
173 |
-
#of_type: overflow # overflow loss
|
174 |
-
#of_weight: 0.1
|
175 |
-
# range_weight: 1 # range loss
|
176 |
-
# fft_type: fft # FFT loss
|
177 |
-
# fft_weight: 0.2 #[.2]
|
178 |
-
color_criterion: color-l1cosinesim # color consistency loss
|
179 |
-
color_weight: 0.1
|
180 |
-
# avg_criterion: avg-l1 # averaging downscale loss
|
181 |
-
# avg_weight: 5
|
182 |
-
# ms_criterion: multiscale-l1 # multi-scale pixel loss
|
183 |
-
# ms_weight: 1e-2
|
184 |
-
#fdpl_type: fdpl # frequency domain-based perceptual loss
|
185 |
-
#fdpl_weight: 1e-3
|
186 |
-
|
187 |
-
# Adversarial loss:
|
188 |
-
#gan_type: vanilla
|
189 |
-
#gan_weight: 4e-3
|
190 |
-
# freeze_loc: 4
|
191 |
-
# For wgan-gp:
|
192 |
-
# D_update_ratio: 1
|
193 |
-
# D_init_iters: 0
|
194 |
-
# gp_weigth: 10
|
195 |
-
# Feature matching (if using the discriminator_vgg_128_fea or discriminator_vgg_fea):
|
196 |
-
# gan_featmaps: true
|
197 |
-
# dis_feature_criterion: cb # discriminator feature loss
|
198 |
-
# dis_feature_weight: 0.01
|
199 |
-
|
200 |
-
# For PPON:
|
201 |
-
# p1_losses: [pix]
|
202 |
-
# p2_losses: [pix-multiscale, ms-ssim]
|
203 |
-
# p3_losses: [fea]
|
204 |
-
# ppon_stages: [1000, 2000]
|
205 |
-
|
206 |
-
# Differentiable Augmentation for Data-Efficient GAN Training
|
207 |
-
# diffaug: true
|
208 |
-
# dapolicy: 'color,transl_zoom,flip,rotate,cutout'
|
209 |
-
|
210 |
-
# Batch (Mixup) augmentations
|
211 |
-
#mixup: false
|
212 |
-
#mixopts: [blend, rgb, mixup, cutmix, cutmixup] # , "cutout", "cutblur"]
|
213 |
-
#mixprob: [1.0, 1.0, 1.0, 1.0, 1.0] #, 1.0, 1.0]
|
214 |
-
#mixalpha: [0.6, 1.0, 1.2, 0.7, 0.7] #, 0.001, 0.7]
|
215 |
-
#aux_mixprob: 1.0
|
216 |
-
#aux_mixalpha: 1.2
|
217 |
-
# mix_p: 1.2
|
218 |
-
|
219 |
-
# Frequency Separator
|
220 |
-
#fs: true
|
221 |
-
#lpf_type: average
|
222 |
-
#hpf_type: average
|
223 |
-
|
224 |
-
# Other training options:
|
225 |
-
manual_seed: 0
|
226 |
-
niter: 250000
|
227 |
-
# warmup_iter: -1
|
228 |
-
#val_freq: 5e3
|
229 |
-
# overwrite_val_imgs: true
|
230 |
-
# val_comparison: true
|
231 |
-
# metrics: 'psnr,ssim,lpips'
|
232 |
-
#grad_clip: auto
|
233 |
-
#grad_clip_value: 0.1 # "auto"
|
234 |
-
|
235 |
-
logger:
|
236 |
-
print_freq: 50
|
237 |
-
save_checkpoint_freq: 500
|
238 |
-
overwrite_chkp: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|