|
{"current_steps": 1, "total_steps": 401, "loss": 6.6643, "accuracy": 0.46875, "learning_rate": 4.375e-08, "epoch": 0.0024933769674302633, "percentage": 0.25, "elapsed_time": "0:04:31", "remaining_time": "1 day, 6:08:25"} |
|
{"current_steps": 2, "total_steps": 401, "loss": 6.8875, "accuracy": 0.5, "learning_rate": 8.75e-08, "epoch": 0.004986753934860527, "percentage": 0.5, "elapsed_time": "0:08:47", "remaining_time": "1 day, 5:12:30"} |
|
{"current_steps": 3, "total_steps": 401, "loss": 10.8975, "accuracy": 0.34375, "learning_rate": 1.3125e-07, "epoch": 0.0074801309022907905, "percentage": 0.75, "elapsed_time": "0:12:09", "remaining_time": "1 day, 2:53:38"} |
|
{"current_steps": 4, "total_steps": 401, "loss": 5.5006, "accuracy": 0.5625, "learning_rate": 1.75e-07, "epoch": 0.009973507869721053, "percentage": 1.0, "elapsed_time": "0:15:08", "remaining_time": "1 day, 1:02:49"} |
|
{"current_steps": 5, "total_steps": 401, "loss": 6.5305, "accuracy": 0.40625, "learning_rate": 2.1875e-07, "epoch": 0.012466884837151316, "percentage": 1.25, "elapsed_time": "0:19:41", "remaining_time": "1 day, 1:59:26"} |
|
{"current_steps": 6, "total_steps": 401, "loss": 10.0926, "accuracy": 0.46875, "learning_rate": 2.625e-07, "epoch": 0.014960261804581581, "percentage": 1.5, "elapsed_time": "0:23:20", "remaining_time": "1 day, 1:36:40"} |
|
{"current_steps": 7, "total_steps": 401, "loss": 10.9058, "accuracy": 0.3125, "learning_rate": 3.0625e-07, "epoch": 0.017453638772011844, "percentage": 1.75, "elapsed_time": "0:27:43", "remaining_time": "1 day, 2:00:22"} |
|
{"current_steps": 8, "total_steps": 401, "loss": 11.804, "accuracy": 0.375, "learning_rate": 3.5e-07, "epoch": 0.019947015739442107, "percentage": 2.0, "elapsed_time": "0:31:30", "remaining_time": "1 day, 1:47:36"} |
|
{"current_steps": 9, "total_steps": 401, "loss": 9.4959, "accuracy": 0.40625, "learning_rate": 3.9375e-07, "epoch": 0.02244039270687237, "percentage": 2.24, "elapsed_time": "0:35:16", "remaining_time": "1 day, 1:36:12"} |
|
{"current_steps": 10, "total_steps": 401, "loss": 8.6131, "accuracy": 0.4375, "learning_rate": 4.375e-07, "epoch": 0.024933769674302633, "percentage": 2.49, "elapsed_time": "0:38:55", "remaining_time": "1 day, 1:21:43"} |
|
{"current_steps": 11, "total_steps": 401, "loss": 9.6928, "accuracy": 0.40625, "learning_rate": 4.812499999999999e-07, "epoch": 0.027427146641732895, "percentage": 2.74, "elapsed_time": "0:43:40", "remaining_time": "1 day, 1:48:20"} |
|
{"current_steps": 12, "total_steps": 401, "loss": 12.4115, "accuracy": 0.34375, "learning_rate": 5.25e-07, "epoch": 0.029920523609163162, "percentage": 2.99, "elapsed_time": "0:46:28", "remaining_time": "1 day, 1:06:41"} |
|
{"current_steps": 13, "total_steps": 401, "loss": 6.8413, "accuracy": 0.59375, "learning_rate": 5.6875e-07, "epoch": 0.03241390057659342, "percentage": 3.24, "elapsed_time": "0:50:38", "remaining_time": "1 day, 1:11:12"} |
|
{"current_steps": 14, "total_steps": 401, "loss": 7.9545, "accuracy": 0.46875, "learning_rate": 6.125e-07, "epoch": 0.03490727754402369, "percentage": 3.49, "elapsed_time": "0:54:02", "remaining_time": "1 day, 0:53:54"} |
|
{"current_steps": 15, "total_steps": 401, "loss": 10.301, "accuracy": 0.34375, "learning_rate": 6.5625e-07, "epoch": 0.03740065451145395, "percentage": 3.74, "elapsed_time": "0:57:10", "remaining_time": "1 day, 0:31:18"} |
|
{"current_steps": 16, "total_steps": 401, "loss": 7.0132, "accuracy": 0.4375, "learning_rate": 7e-07, "epoch": 0.039894031478884213, "percentage": 3.99, "elapsed_time": "1:00:37", "remaining_time": "1 day, 0:18:55"} |
|
{"current_steps": 17, "total_steps": 401, "loss": 8.648, "accuracy": 0.40625, "learning_rate": 6.999883476391534e-07, "epoch": 0.04238740844631448, "percentage": 4.24, "elapsed_time": "1:04:20", "remaining_time": "1 day, 0:13:31"} |
|
{"current_steps": 18, "total_steps": 401, "loss": 10.1792, "accuracy": 0.3125, "learning_rate": 6.999533913324853e-07, "epoch": 0.04488078541374474, "percentage": 4.49, "elapsed_time": "1:07:38", "remaining_time": "23:59:22"} |
|
{"current_steps": 19, "total_steps": 401, "loss": 5.5006, "accuracy": 0.625, "learning_rate": 6.998951334075586e-07, "epoch": 0.047374162381175006, "percentage": 4.74, "elapsed_time": "1:10:51", "remaining_time": "23:44:29"} |
|
{"current_steps": 20, "total_steps": 401, "loss": 8.011, "accuracy": 0.46875, "learning_rate": 6.998135777434723e-07, "epoch": 0.049867539348605265, "percentage": 4.99, "elapsed_time": "1:15:50", "remaining_time": "1 day, 0:04:43"} |
|
{"current_steps": 21, "total_steps": 401, "loss": 8.9355, "accuracy": 0.40625, "learning_rate": 6.99708729770604e-07, "epoch": 0.05236091631603553, "percentage": 5.24, "elapsed_time": "1:19:51", "remaining_time": "1 day, 0:05:09"} |
|
{"current_steps": 22, "total_steps": 401, "loss": 6.2756, "accuracy": 0.34375, "learning_rate": 6.995805964702472e-07, "epoch": 0.05485429328346579, "percentage": 5.49, "elapsed_time": "1:23:03", "remaining_time": "23:50:59"} |
|
{"current_steps": 23, "total_steps": 401, "loss": 9.051, "accuracy": 0.4375, "learning_rate": 6.994291863741474e-07, "epoch": 0.05734767025089606, "percentage": 5.74, "elapsed_time": "1:27:24", "remaining_time": "23:56:33"} |
|
{"current_steps": 24, "total_steps": 401, "loss": 11.7809, "accuracy": 0.3125, "learning_rate": 6.992545095639337e-07, "epoch": 0.059841047218326324, "percentage": 5.99, "elapsed_time": "1:31:05", "remaining_time": "23:50:59"} |
|
{"current_steps": 25, "total_steps": 401, "loss": 7.8375, "accuracy": 0.4375, "learning_rate": 6.990565776704475e-07, "epoch": 0.06233442418575658, "percentage": 6.23, "elapsed_time": "1:35:03", "remaining_time": "23:49:39"} |
|
{"current_steps": 26, "total_steps": 401, "loss": 10.6297, "accuracy": 0.34375, "learning_rate": 6.988354038729676e-07, "epoch": 0.06482780115318684, "percentage": 6.48, "elapsed_time": "1:39:14", "remaining_time": "23:51:15"} |
|
{"current_steps": 27, "total_steps": 401, "loss": 8.3075, "accuracy": 0.1875, "learning_rate": 6.985910028983336e-07, "epoch": 0.06732117812061711, "percentage": 6.73, "elapsed_time": "1:43:31", "remaining_time": "23:53:58"} |
|
{"current_steps": 28, "total_steps": 401, "loss": 7.3535, "accuracy": 0.40625, "learning_rate": 6.983233910199648e-07, "epoch": 0.06981455508804738, "percentage": 6.98, "elapsed_time": "1:47:39", "remaining_time": "23:54:04"} |
|
{"current_steps": 29, "total_steps": 401, "loss": 7.5819, "accuracy": 0.40625, "learning_rate": 6.98032586056776e-07, "epoch": 0.07230793205547764, "percentage": 7.23, "elapsed_time": "1:51:19", "remaining_time": "23:48:00"} |
|
{"current_steps": 30, "total_steps": 401, "loss": 9.6435, "accuracy": 0.34375, "learning_rate": 6.977186073719925e-07, "epoch": 0.0748013090229079, "percentage": 7.48, "elapsed_time": "1:55:30", "remaining_time": "23:48:29"} |
|
{"current_steps": 31, "total_steps": 401, "loss": 4.8073, "accuracy": 0.46875, "learning_rate": 6.973814758718596e-07, "epoch": 0.07729468599033816, "percentage": 7.73, "elapsed_time": "1:59:22", "remaining_time": "23:44:51"} |
|
{"current_steps": 32, "total_steps": 401, "loss": 6.4345, "accuracy": 0.4375, "learning_rate": 6.97021214004251e-07, "epoch": 0.07978806295776843, "percentage": 7.98, "elapsed_time": "2:03:06", "remaining_time": "23:39:34"} |
|
{"current_steps": 33, "total_steps": 401, "loss": 9.2994, "accuracy": 0.34375, "learning_rate": 6.96637845757174e-07, "epoch": 0.0822814399251987, "percentage": 8.23, "elapsed_time": "2:06:03", "remaining_time": "23:25:46"} |
|
{"current_steps": 34, "total_steps": 401, "loss": 4.6079, "accuracy": 0.46875, "learning_rate": 6.962313966571722e-07, "epoch": 0.08477481689262896, "percentage": 8.48, "elapsed_time": "2:09:20", "remaining_time": "23:16:06"} |
|
{"current_steps": 35, "total_steps": 401, "loss": 5.2894, "accuracy": 0.4375, "learning_rate": 6.958018937676262e-07, "epoch": 0.08726819386005921, "percentage": 8.73, "elapsed_time": "2:13:04", "remaining_time": "23:11:37"} |
|
{"current_steps": 36, "total_steps": 401, "loss": 6.3929, "accuracy": 0.40625, "learning_rate": 6.953493656869511e-07, "epoch": 0.08976157082748948, "percentage": 8.98, "elapsed_time": "2:16:06", "remaining_time": "23:00:03"} |
|
{"current_steps": 37, "total_steps": 401, "loss": 5.8692, "accuracy": 0.53125, "learning_rate": 6.948738425466925e-07, "epoch": 0.09225494779491974, "percentage": 9.23, "elapsed_time": "2:19:27", "remaining_time": "22:52:02"} |
|
{"current_steps": 38, "total_steps": 401, "loss": 5.3116, "accuracy": 0.375, "learning_rate": 6.943753560095204e-07, "epoch": 0.09474832476235001, "percentage": 9.48, "elapsed_time": "2:23:19", "remaining_time": "22:49:07"} |
|
{"current_steps": 39, "total_steps": 401, "loss": 7.0117, "accuracy": 0.3125, "learning_rate": 6.938539392671203e-07, "epoch": 0.09724170172978028, "percentage": 9.73, "elapsed_time": "2:27:13", "remaining_time": "22:46:30"} |
|
{"current_steps": 40, "total_steps": 401, "loss": 4.2095, "accuracy": 0.5625, "learning_rate": 6.933096270379841e-07, "epoch": 0.09973507869721053, "percentage": 9.98, "elapsed_time": "2:30:39", "remaining_time": "22:39:39"} |
|
{"current_steps": 41, "total_steps": 401, "loss": 5.0733, "accuracy": 0.375, "learning_rate": 6.927424555650974e-07, "epoch": 0.1022284556646408, "percentage": 10.22, "elapsed_time": "2:34:34", "remaining_time": "22:37:15"} |
|
{"current_steps": 42, "total_steps": 401, "loss": 8.0476, "accuracy": 0.21875, "learning_rate": 6.921524626135268e-07, "epoch": 0.10472183263207106, "percentage": 10.47, "elapsed_time": "2:38:37", "remaining_time": "22:35:54"} |
|
{"current_steps": 43, "total_steps": 401, "loss": 3.0284, "accuracy": 0.5, "learning_rate": 6.915396874679055e-07, "epoch": 0.10721520959950133, "percentage": 10.72, "elapsed_time": "2:42:58", "remaining_time": "22:36:47"} |
|
{"current_steps": 44, "total_steps": 401, "loss": 4.9219, "accuracy": 0.34375, "learning_rate": 6.909041709298168e-07, "epoch": 0.10970858656693158, "percentage": 10.97, "elapsed_time": "2:46:59", "remaining_time": "22:34:57"} |
|
{"current_steps": 45, "total_steps": 401, "loss": 5.1754, "accuracy": 0.53125, "learning_rate": 6.902459553150779e-07, "epoch": 0.11220196353436185, "percentage": 11.22, "elapsed_time": "2:50:05", "remaining_time": "22:25:37"} |
|
{"current_steps": 46, "total_steps": 401, "loss": 6.2716, "accuracy": 0.34375, "learning_rate": 6.895650844509226e-07, "epoch": 0.11469534050179211, "percentage": 11.47, "elapsed_time": "2:53:06", "remaining_time": "22:15:55"} |
|
{"current_steps": 47, "total_steps": 401, "loss": 6.6894, "accuracy": 0.53125, "learning_rate": 6.88861603673082e-07, "epoch": 0.11718871746922238, "percentage": 11.72, "elapsed_time": "2:57:28", "remaining_time": "22:16:42"} |
|
{"current_steps": 48, "total_steps": 401, "loss": 6.6813, "accuracy": 0.3125, "learning_rate": 6.88135559822767e-07, "epoch": 0.11968209443665265, "percentage": 11.97, "elapsed_time": "3:01:38", "remaining_time": "22:15:49"} |
|
{"current_steps": 49, "total_steps": 401, "loss": 3.3706, "accuracy": 0.5, "learning_rate": 6.873870012435486e-07, "epoch": 0.1221754714040829, "percentage": 12.22, "elapsed_time": "3:05:23", "remaining_time": "22:11:50"} |
|
{"current_steps": 50, "total_steps": 401, "loss": 6.7412, "accuracy": 0.34375, "learning_rate": 6.866159777781393e-07, "epoch": 0.12466884837151317, "percentage": 12.47, "elapsed_time": "3:08:35", "remaining_time": "22:03:56"} |
|
{"current_steps": 51, "total_steps": 401, "loss": 6.2144, "accuracy": 0.34375, "learning_rate": 6.858225407650741e-07, "epoch": 0.12716222533894342, "percentage": 12.72, "elapsed_time": "3:13:04", "remaining_time": "22:05:04"} |
|
{"current_steps": 52, "total_steps": 401, "loss": 6.5912, "accuracy": 0.3125, "learning_rate": 6.850067430352923e-07, "epoch": 0.12965560230637369, "percentage": 12.97, "elapsed_time": "3:16:12", "remaining_time": "21:56:52"} |
|
{"current_steps": 53, "total_steps": 401, "loss": 5.29, "accuracy": 0.40625, "learning_rate": 6.8416863890862e-07, "epoch": 0.13214897927380395, "percentage": 13.22, "elapsed_time": "3:20:06", "remaining_time": "21:53:53"} |
|
{"current_steps": 54, "total_steps": 401, "loss": 3.6665, "accuracy": 0.5625, "learning_rate": 6.833082841901524e-07, "epoch": 0.13464235624123422, "percentage": 13.47, "elapsed_time": "3:24:03", "remaining_time": "21:51:17"} |
|
{"current_steps": 55, "total_steps": 401, "loss": 5.8169, "accuracy": 0.3125, "learning_rate": 6.82425736166539e-07, "epoch": 0.13713573320866448, "percentage": 13.72, "elapsed_time": "3:27:53", "remaining_time": "21:47:48"} |
|
{"current_steps": 56, "total_steps": 401, "loss": 5.3807, "accuracy": 0.46875, "learning_rate": 6.815210536021685e-07, "epoch": 0.13962911017609475, "percentage": 13.97, "elapsed_time": "3:30:55", "remaining_time": "21:39:28"} |
|
{"current_steps": 57, "total_steps": 401, "loss": 5.2342, "accuracy": 0.3125, "learning_rate": 6.805942967352563e-07, "epoch": 0.14212248714352502, "percentage": 14.21, "elapsed_time": "3:34:13", "remaining_time": "21:32:51"} |
|
{"current_steps": 58, "total_steps": 401, "loss": 5.0217, "accuracy": 0.28125, "learning_rate": 6.796455272738337e-07, "epoch": 0.14461586411095528, "percentage": 14.46, "elapsed_time": "3:37:40", "remaining_time": "21:27:17"} |
|
{"current_steps": 59, "total_steps": 401, "loss": 4.9925, "accuracy": 0.3125, "learning_rate": 6.78674808391638e-07, "epoch": 0.14710924107838555, "percentage": 14.71, "elapsed_time": "3:40:55", "remaining_time": "21:20:37"} |
|
{"current_steps": 60, "total_steps": 401, "loss": 4.0638, "accuracy": 0.4375, "learning_rate": 6.776822047239079e-07, "epoch": 0.1496026180458158, "percentage": 14.96, "elapsed_time": "3:43:43", "remaining_time": "21:11:30"} |
|
{"current_steps": 61, "total_steps": 401, "loss": 3.1759, "accuracy": 0.46875, "learning_rate": 6.766677823630784e-07, "epoch": 0.15209599501324605, "percentage": 15.21, "elapsed_time": "3:46:41", "remaining_time": "21:03:33"} |
|
{"current_steps": 62, "total_steps": 401, "loss": 5.2966, "accuracy": 0.3125, "learning_rate": 6.756316088543799e-07, "epoch": 0.15458937198067632, "percentage": 15.46, "elapsed_time": "3:49:39", "remaining_time": "20:55:43"} |
|
{"current_steps": 63, "total_steps": 401, "loss": 3.2516, "accuracy": 0.40625, "learning_rate": 6.74573753191342e-07, "epoch": 0.1570827489481066, "percentage": 15.71, "elapsed_time": "3:53:52", "remaining_time": "20:54:45"} |
|
{"current_steps": 64, "total_steps": 401, "loss": 3.548, "accuracy": 0.59375, "learning_rate": 6.734942858111986e-07, "epoch": 0.15957612591553685, "percentage": 15.96, "elapsed_time": "3:57:33", "remaining_time": "20:50:53"} |
|
{"current_steps": 65, "total_steps": 401, "loss": 4.8669, "accuracy": 0.34375, "learning_rate": 6.723932785901975e-07, "epoch": 0.16206950288296712, "percentage": 16.21, "elapsed_time": "4:01:33", "remaining_time": "20:48:42"} |
|
{"current_steps": 66, "total_steps": 401, "loss": 2.2855, "accuracy": 0.6875, "learning_rate": 6.712708048388158e-07, "epoch": 0.1645628798503974, "percentage": 16.46, "elapsed_time": "4:06:23", "remaining_time": "20:50:39"} |
|
{"current_steps": 67, "total_steps": 401, "loss": 3.8984, "accuracy": 0.53125, "learning_rate": 6.701269392968773e-07, "epoch": 0.16705625681782765, "percentage": 16.71, "elapsed_time": "4:09:44", "remaining_time": "20:44:57"} |
|
{"current_steps": 68, "total_steps": 401, "loss": 4.9801, "accuracy": 0.40625, "learning_rate": 6.689617581285765e-07, "epoch": 0.16954963378525792, "percentage": 16.96, "elapsed_time": "4:14:37", "remaining_time": "20:46:52"} |
|
{"current_steps": 69, "total_steps": 401, "loss": 5.1017, "accuracy": 0.5625, "learning_rate": 6.677753389174075e-07, "epoch": 0.17204301075268819, "percentage": 17.21, "elapsed_time": "4:17:56", "remaining_time": "20:41:06"} |
|
{"current_steps": 70, "total_steps": 401, "loss": 4.5983, "accuracy": 0.4375, "learning_rate": 6.665677606609973e-07, "epoch": 0.17453638772011842, "percentage": 17.46, "elapsed_time": "4:21:39", "remaining_time": "20:37:14"} |
|
{"current_steps": 71, "total_steps": 401, "loss": 4.539, "accuracy": 0.375, "learning_rate": 6.653391037658466e-07, "epoch": 0.1770297646875487, "percentage": 17.71, "elapsed_time": "4:24:40", "remaining_time": "20:30:12"} |
|
{"current_steps": 72, "total_steps": 401, "loss": 5.072, "accuracy": 0.3125, "learning_rate": 6.640894500419754e-07, "epoch": 0.17952314165497896, "percentage": 17.96, "elapsed_time": "4:28:12", "remaining_time": "20:25:35"} |
|
{"current_steps": 73, "total_steps": 401, "loss": 2.5731, "accuracy": 0.5, "learning_rate": 6.628188826974758e-07, "epoch": 0.18201651862240922, "percentage": 18.2, "elapsed_time": "4:31:41", "remaining_time": "20:20:47"} |
|
{"current_steps": 74, "total_steps": 401, "loss": 2.1388, "accuracy": 0.53125, "learning_rate": 6.615274863329715e-07, "epoch": 0.1845098955898395, "percentage": 18.45, "elapsed_time": "4:34:25", "remaining_time": "20:12:41"} |
|
{"current_steps": 75, "total_steps": 401, "loss": 2.9419, "accuracy": 0.4375, "learning_rate": 6.602153469359852e-07, "epoch": 0.18700327255726976, "percentage": 18.7, "elapsed_time": "4:38:03", "remaining_time": "20:08:36"} |
|
{"current_steps": 76, "total_steps": 401, "loss": 4.3453, "accuracy": 0.34375, "learning_rate": 6.588825518752124e-07, "epoch": 0.18949664952470002, "percentage": 18.95, "elapsed_time": "4:42:40", "remaining_time": "20:08:49"} |
|
{"current_steps": 77, "total_steps": 401, "loss": 3.5175, "accuracy": 0.5, "learning_rate": 6.575291898947046e-07, "epoch": 0.1919900264921303, "percentage": 19.2, "elapsed_time": "4:46:39", "remaining_time": "20:06:10"} |
|
{"current_steps": 78, "total_steps": 401, "loss": 4.2889, "accuracy": 0.375, "learning_rate": 6.561553511079596e-07, "epoch": 0.19448340345956056, "percentage": 19.45, "elapsed_time": "4:50:14", "remaining_time": "20:01:52"} |
|
{"current_steps": 79, "total_steps": 401, "loss": 4.8103, "accuracy": 0.40625, "learning_rate": 6.54761126991922e-07, "epoch": 0.1969767804269908, "percentage": 19.7, "elapsed_time": "4:53:23", "remaining_time": "19:55:50"} |
|
{"current_steps": 80, "total_steps": 401, "loss": 5.119, "accuracy": 0.46875, "learning_rate": 6.533466103808918e-07, "epoch": 0.19947015739442106, "percentage": 19.95, "elapsed_time": "4:57:02", "remaining_time": "19:51:52"} |
|
{"current_steps": 81, "total_steps": 401, "loss": 5.316, "accuracy": 0.3125, "learning_rate": 6.519118954603431e-07, "epoch": 0.20196353436185133, "percentage": 20.2, "elapsed_time": "5:00:44", "remaining_time": "19:48:06"} |
|
{"current_steps": 82, "total_steps": 401, "loss": 3.5423, "accuracy": 0.53125, "learning_rate": 6.504570777606531e-07, "epoch": 0.2044569113292816, "percentage": 20.45, "elapsed_time": "5:03:59", "remaining_time": "19:42:37"} |
|
{"current_steps": 83, "total_steps": 401, "loss": 2.5165, "accuracy": 0.53125, "learning_rate": 6.489822541507404e-07, "epoch": 0.20695028829671186, "percentage": 20.7, "elapsed_time": "5:07:26", "remaining_time": "19:37:53"} |
|
{"current_steps": 84, "total_steps": 401, "loss": 3.4071, "accuracy": 0.46875, "learning_rate": 6.474875228316158e-07, "epoch": 0.20944366526414213, "percentage": 20.95, "elapsed_time": "5:10:47", "remaining_time": "19:32:53"} |
|
{"current_steps": 85, "total_steps": 401, "loss": 3.0325, "accuracy": 0.59375, "learning_rate": 6.459729833298434e-07, "epoch": 0.2119370422315724, "percentage": 21.2, "elapsed_time": "5:14:55", "remaining_time": "19:30:47"} |
|
{"current_steps": 86, "total_steps": 401, "loss": 3.0653, "accuracy": 0.5, "learning_rate": 6.444387364909134e-07, "epoch": 0.21443041919900266, "percentage": 21.45, "elapsed_time": "5:17:42", "remaining_time": "19:23:40"} |
|
{"current_steps": 87, "total_steps": 401, "loss": 2.8385, "accuracy": 0.5625, "learning_rate": 6.428848844725274e-07, "epoch": 0.21692379616643293, "percentage": 21.7, "elapsed_time": "5:20:43", "remaining_time": "19:17:32"} |
|
{"current_steps": 88, "total_steps": 401, "loss": 3.306, "accuracy": 0.4375, "learning_rate": 6.413115307377965e-07, "epoch": 0.21941717313386316, "percentage": 21.95, "elapsed_time": "5:24:20", "remaining_time": "19:13:36"} |
|
{"current_steps": 89, "total_steps": 401, "loss": 2.831, "accuracy": 0.59375, "learning_rate": 6.397187800483519e-07, "epoch": 0.22191055010129343, "percentage": 22.19, "elapsed_time": "5:27:53", "remaining_time": "19:09:28"} |
|
{"current_steps": 90, "total_steps": 401, "loss": 3.8132, "accuracy": 0.40625, "learning_rate": 6.381067384573693e-07, "epoch": 0.2244039270687237, "percentage": 22.44, "elapsed_time": "5:31:03", "remaining_time": "19:03:59"} |
|
{"current_steps": 91, "total_steps": 401, "loss": 2.5581, "accuracy": 0.59375, "learning_rate": 6.364755133025077e-07, "epoch": 0.22689730403615396, "percentage": 22.69, "elapsed_time": "5:34:05", "remaining_time": "18:58:05"} |
|
{"current_steps": 92, "total_steps": 401, "loss": 4.2467, "accuracy": 0.4375, "learning_rate": 6.348252131987621e-07, "epoch": 0.22939068100358423, "percentage": 22.94, "elapsed_time": "5:37:02", "remaining_time": "18:52:02"} |
|
{"current_steps": 93, "total_steps": 401, "loss": 3.7742, "accuracy": 0.46875, "learning_rate": 6.331559480312316e-07, "epoch": 0.2318840579710145, "percentage": 23.19, "elapsed_time": "5:40:28", "remaining_time": "18:47:36"} |
|
{"current_steps": 94, "total_steps": 401, "loss": 2.4021, "accuracy": 0.5, "learning_rate": 6.314678289478021e-07, "epoch": 0.23437743493844476, "percentage": 23.44, "elapsed_time": "5:43:48", "remaining_time": "18:42:51"} |
|
{"current_steps": 95, "total_steps": 401, "loss": 2.1866, "accuracy": 0.65625, "learning_rate": 6.297609683517465e-07, "epoch": 0.23687081190587503, "percentage": 23.69, "elapsed_time": "5:46:37", "remaining_time": "18:36:30"} |
|
{"current_steps": 96, "total_steps": 401, "loss": 2.2729, "accuracy": 0.5625, "learning_rate": 6.280354798942394e-07, "epoch": 0.2393641888733053, "percentage": 23.94, "elapsed_time": "5:50:36", "remaining_time": "18:33:53"} |
|
{"current_steps": 97, "total_steps": 401, "loss": 3.0957, "accuracy": 0.625, "learning_rate": 6.262914784667902e-07, "epoch": 0.24185756584073553, "percentage": 24.19, "elapsed_time": "5:54:30", "remaining_time": "18:31:01"} |
|
{"current_steps": 98, "total_steps": 401, "loss": 4.0758, "accuracy": 0.40625, "learning_rate": 6.245290801935929e-07, "epoch": 0.2443509428081658, "percentage": 24.44, "elapsed_time": "5:59:21", "remaining_time": "18:31:03"} |
|
{"current_steps": 99, "total_steps": 401, "loss": 2.156, "accuracy": 0.59375, "learning_rate": 6.227484024237941e-07, "epoch": 0.24684431977559607, "percentage": 24.69, "elapsed_time": "6:02:06", "remaining_time": "18:24:37"} |
|
{"current_steps": 100, "total_steps": 401, "loss": 4.6426, "accuracy": 0.53125, "learning_rate": 6.209495637236789e-07, "epoch": 0.24933769674302633, "percentage": 24.94, "elapsed_time": "6:05:12", "remaining_time": "18:19:16"} |
|
{"current_steps": 101, "total_steps": 401, "loss": 3.8946, "accuracy": 0.59375, "learning_rate": 6.191326838687767e-07, "epoch": 0.2518310737104566, "percentage": 25.19, "elapsed_time": "6:09:24", "remaining_time": "18:17:14"} |
|
{"current_steps": 102, "total_steps": 401, "loss": 3.3786, "accuracy": 0.53125, "learning_rate": 6.172978838358858e-07, "epoch": 0.25432445067788684, "percentage": 25.44, "elapsed_time": "6:14:58", "remaining_time": "18:19:10"} |
|
{"current_steps": 103, "total_steps": 401, "loss": 4.0273, "accuracy": 0.40625, "learning_rate": 6.154452857950179e-07, "epoch": 0.25681782764531713, "percentage": 25.69, "elapsed_time": "6:20:55", "remaining_time": "18:22:06"} |
|
{"current_steps": 104, "total_steps": 401, "loss": 1.5765, "accuracy": 0.84375, "learning_rate": 6.135750131012639e-07, "epoch": 0.25931120461274737, "percentage": 25.94, "elapsed_time": "6:24:49", "remaining_time": "18:18:59"} |
|
{"current_steps": 105, "total_steps": 401, "loss": 4.2421, "accuracy": 0.46875, "learning_rate": 6.116871902865795e-07, "epoch": 0.26180458158017766, "percentage": 26.18, "elapsed_time": "6:28:00", "remaining_time": "18:13:48"} |
|
{"current_steps": 106, "total_steps": 401, "loss": 1.3615, "accuracy": 0.6875, "learning_rate": 6.097819430514944e-07, "epoch": 0.2642979585476079, "percentage": 26.43, "elapsed_time": "6:33:05", "remaining_time": "18:13:58"} |
|
{"current_steps": 107, "total_steps": 401, "loss": 3.7453, "accuracy": 0.5, "learning_rate": 6.078593982567416e-07, "epoch": 0.2667913355150382, "percentage": 26.68, "elapsed_time": "6:36:49", "remaining_time": "18:10:20"} |
|
{"current_steps": 108, "total_steps": 401, "loss": 5.099, "accuracy": 0.375, "learning_rate": 6.059196839148109e-07, "epoch": 0.26928471248246844, "percentage": 26.93, "elapsed_time": "6:42:23", "remaining_time": "18:11:40"} |
|
{"current_steps": 109, "total_steps": 401, "loss": 2.0234, "accuracy": 0.71875, "learning_rate": 6.039629291814247e-07, "epoch": 0.27177808944989873, "percentage": 27.18, "elapsed_time": "6:45:53", "remaining_time": "18:07:19"} |
|
{"current_steps": 110, "total_steps": 401, "loss": 3.8864, "accuracy": 0.4375, "learning_rate": 6.019892643469387e-07, "epoch": 0.27427146641732897, "percentage": 27.43, "elapsed_time": "6:50:16", "remaining_time": "18:05:21"} |
|
{"current_steps": 111, "total_steps": 401, "loss": 3.1086, "accuracy": 0.40625, "learning_rate": 5.999988208276662e-07, "epoch": 0.2767648433847592, "percentage": 27.68, "elapsed_time": "6:54:40", "remaining_time": "18:03:22"} |
|
{"current_steps": 112, "total_steps": 401, "loss": 2.3478, "accuracy": 0.4375, "learning_rate": 5.979917311571282e-07, "epoch": 0.2792582203521895, "percentage": 27.93, "elapsed_time": "6:58:52", "remaining_time": "18:00:51"} |
|
{"current_steps": 113, "total_steps": 401, "loss": 2.5737, "accuracy": 0.5625, "learning_rate": 5.959681289772278e-07, "epoch": 0.28175159731961974, "percentage": 28.18, "elapsed_time": "7:01:59", "remaining_time": "17:55:32"} |
|
{"current_steps": 114, "total_steps": 401, "loss": 3.128, "accuracy": 0.53125, "learning_rate": 5.939281490293527e-07, "epoch": 0.28424497428705003, "percentage": 28.43, "elapsed_time": "7:07:05", "remaining_time": "17:55:14"} |
|
{"current_steps": 115, "total_steps": 401, "loss": 3.4653, "accuracy": 0.40625, "learning_rate": 5.918719271454026e-07, "epoch": 0.2867383512544803, "percentage": 28.68, "elapsed_time": "7:10:14", "remaining_time": "17:49:58"} |
|
{"current_steps": 116, "total_steps": 401, "loss": 2.018, "accuracy": 0.71875, "learning_rate": 5.897996002387454e-07, "epoch": 0.28923172822191057, "percentage": 28.93, "elapsed_time": "7:14:24", "remaining_time": "17:47:18"} |
|
{"current_steps": 117, "total_steps": 401, "loss": 2.7597, "accuracy": 0.59375, "learning_rate": 5.877113062951007e-07, "epoch": 0.2917251051893408, "percentage": 29.18, "elapsed_time": "7:18:48", "remaining_time": "17:45:07"} |
|
{"current_steps": 118, "total_steps": 401, "loss": 2.6585, "accuracy": 0.59375, "learning_rate": 5.856071843633516e-07, "epoch": 0.2942184821567711, "percentage": 29.43, "elapsed_time": "7:22:47", "remaining_time": "17:41:56"} |
|
{"current_steps": 119, "total_steps": 401, "loss": 1.7712, "accuracy": 0.71875, "learning_rate": 5.834873745462869e-07, "epoch": 0.29671185912420134, "percentage": 29.68, "elapsed_time": "7:25:01", "remaining_time": "17:34:36"} |
|
{"current_steps": 120, "total_steps": 401, "loss": 1.9083, "accuracy": 0.46875, "learning_rate": 5.813520179912718e-07, "epoch": 0.2992052360916316, "percentage": 29.93, "elapsed_time": "7:28:19", "remaining_time": "17:29:49"} |
|
{"current_steps": 121, "total_steps": 401, "loss": 2.7587, "accuracy": 0.5625, "learning_rate": 5.792012568808498e-07, "epoch": 0.30169861305906187, "percentage": 30.17, "elapsed_time": "7:31:15", "remaining_time": "17:24:14"} |
|
{"current_steps": 122, "total_steps": 401, "loss": 2.1925, "accuracy": 0.53125, "learning_rate": 5.770352344232754e-07, "epoch": 0.3041919900264921, "percentage": 30.42, "elapsed_time": "7:34:28", "remaining_time": "17:19:20"} |
|
{"current_steps": 123, "total_steps": 401, "loss": 2.116, "accuracy": 0.625, "learning_rate": 5.748540948429791e-07, "epoch": 0.3066853669939224, "percentage": 30.67, "elapsed_time": "7:37:53", "remaining_time": "17:14:53"} |
|
{"current_steps": 124, "total_steps": 401, "loss": 1.9028, "accuracy": 0.53125, "learning_rate": 5.726579833709629e-07, "epoch": 0.30917874396135264, "percentage": 30.92, "elapsed_time": "7:41:11", "remaining_time": "17:10:14"} |
|
{"current_steps": 125, "total_steps": 401, "loss": 2.7418, "accuracy": 0.5625, "learning_rate": 5.704470462351321e-07, "epoch": 0.31167212092878294, "percentage": 31.17, "elapsed_time": "7:44:50", "remaining_time": "17:06:22"} |
|
{"current_steps": 126, "total_steps": 401, "loss": 1.6725, "accuracy": 0.75, "learning_rate": 5.682214306505567e-07, "epoch": 0.3141654978962132, "percentage": 31.42, "elapsed_time": "7:48:47", "remaining_time": "17:03:09"} |
|
{"current_steps": 127, "total_steps": 401, "loss": 3.444, "accuracy": 0.5625, "learning_rate": 5.659812848096706e-07, "epoch": 0.31665887486364347, "percentage": 31.67, "elapsed_time": "7:53:18", "remaining_time": "17:01:08"} |
|
{"current_steps": 128, "total_steps": 401, "loss": 2.9597, "accuracy": 0.46875, "learning_rate": 5.637267578724034e-07, "epoch": 0.3191522518310737, "percentage": 31.92, "elapsed_time": "7:57:55", "remaining_time": "16:59:20"} |
|
{"current_steps": 129, "total_steps": 401, "loss": 3.1744, "accuracy": 0.46875, "learning_rate": 5.614579999562487e-07, "epoch": 0.32164562879850395, "percentage": 32.17, "elapsed_time": "8:03:45", "remaining_time": "17:00:00"} |
|
{"current_steps": 130, "total_steps": 401, "loss": 1.9932, "accuracy": 0.5625, "learning_rate": 5.591751621262691e-07, "epoch": 0.32413900576593424, "percentage": 32.42, "elapsed_time": "8:07:12", "remaining_time": "16:55:38"} |
|
{"current_steps": 131, "total_steps": 401, "loss": 2.1934, "accuracy": 0.5625, "learning_rate": 5.568783963850368e-07, "epoch": 0.3266323827333645, "percentage": 32.67, "elapsed_time": "8:11:02", "remaining_time": "16:52:03"} |
|
{"current_steps": 132, "total_steps": 401, "loss": 1.9177, "accuracy": 0.625, "learning_rate": 5.545678556625129e-07, "epoch": 0.3291257597007948, "percentage": 32.92, "elapsed_time": "8:14:21", "remaining_time": "16:47:26"} |
|
{"current_steps": 133, "total_steps": 401, "loss": 1.625, "accuracy": 0.75, "learning_rate": 5.522436938058645e-07, "epoch": 0.331619136668225, "percentage": 33.17, "elapsed_time": "8:17:32", "remaining_time": "16:42:33"} |
|
{"current_steps": 134, "total_steps": 401, "loss": 2.7709, "accuracy": 0.5625, "learning_rate": 5.49906065569221e-07, "epoch": 0.3341125136356553, "percentage": 33.42, "elapsed_time": "8:21:33", "remaining_time": "16:39:22"} |
|
{"current_steps": 135, "total_steps": 401, "loss": 1.4884, "accuracy": 0.75, "learning_rate": 5.475551266033692e-07, "epoch": 0.33660589060308554, "percentage": 33.67, "elapsed_time": "8:25:25", "remaining_time": "16:35:51"} |
|
{"current_steps": 136, "total_steps": 401, "loss": 1.2734, "accuracy": 0.78125, "learning_rate": 5.451910334453903e-07, "epoch": 0.33909926757051584, "percentage": 33.92, "elapsed_time": "8:28:29", "remaining_time": "16:30:48"} |
|
{"current_steps": 137, "total_steps": 401, "loss": 2.9125, "accuracy": 0.46875, "learning_rate": 5.428139435082358e-07, "epoch": 0.3415926445379461, "percentage": 34.16, "elapsed_time": "8:31:44", "remaining_time": "16:26:07"} |
|
{"current_steps": 138, "total_steps": 401, "loss": 1.7018, "accuracy": 0.65625, "learning_rate": 5.404240150702472e-07, "epoch": 0.34408602150537637, "percentage": 34.41, "elapsed_time": "8:34:58", "remaining_time": "16:21:26"} |
|
{"current_steps": 139, "total_steps": 401, "loss": 2.6886, "accuracy": 0.65625, "learning_rate": 5.38021407264616e-07, "epoch": 0.3465793984728066, "percentage": 34.66, "elapsed_time": "8:37:46", "remaining_time": "16:15:56"} |
|
{"current_steps": 140, "total_steps": 401, "loss": 2.4405, "accuracy": 0.59375, "learning_rate": 5.356062800687886e-07, "epoch": 0.34907277544023685, "percentage": 34.91, "elapsed_time": "8:41:06", "remaining_time": "16:11:29"} |
|
{"current_steps": 141, "total_steps": 401, "loss": 1.5742, "accuracy": 0.625, "learning_rate": 5.331787942938142e-07, "epoch": 0.35156615240766714, "percentage": 35.16, "elapsed_time": "8:44:42", "remaining_time": "16:07:32"} |
|
{"current_steps": 142, "total_steps": 401, "loss": 1.5398, "accuracy": 0.6875, "learning_rate": 5.307391115736366e-07, "epoch": 0.3540595293750974, "percentage": 35.41, "elapsed_time": "8:49:11", "remaining_time": "16:05:12"} |
|
{"current_steps": 143, "total_steps": 401, "loss": 1.7974, "accuracy": 0.59375, "learning_rate": 5.282873943543326e-07, "epoch": 0.3565529063425277, "percentage": 35.66, "elapsed_time": "8:53:26", "remaining_time": "16:02:26"} |
|
{"current_steps": 144, "total_steps": 401, "loss": 2.1616, "accuracy": 0.65625, "learning_rate": 5.258238058832948e-07, "epoch": 0.3590462833099579, "percentage": 35.91, "elapsed_time": "8:57:46", "remaining_time": "15:59:47"} |
|
{"current_steps": 145, "total_steps": 401, "loss": 1.4328, "accuracy": 0.6875, "learning_rate": 5.233485101983624e-07, "epoch": 0.3615396602773882, "percentage": 36.16, "elapsed_time": "9:00:50", "remaining_time": "15:54:52"} |
|
{"current_steps": 146, "total_steps": 401, "loss": 1.8646, "accuracy": 0.6875, "learning_rate": 5.208616721168984e-07, "epoch": 0.36403303724481845, "percentage": 36.41, "elapsed_time": "9:03:35", "remaining_time": "15:49:25"} |
|
{"current_steps": 147, "total_steps": 401, "loss": 2.2763, "accuracy": 0.5, "learning_rate": 5.183634572248153e-07, "epoch": 0.36652641421224874, "percentage": 36.66, "elapsed_time": "9:07:14", "remaining_time": "15:45:33"} |
|
{"current_steps": 148, "total_steps": 401, "loss": 2.2646, "accuracy": 0.5625, "learning_rate": 5.158540318655495e-07, "epoch": 0.369019791179679, "percentage": 36.91, "elapsed_time": "9:11:26", "remaining_time": "15:42:39"} |
|
{"current_steps": 149, "total_steps": 401, "loss": 1.3901, "accuracy": 0.65625, "learning_rate": 5.133335631289858e-07, "epoch": 0.3715131681471092, "percentage": 37.16, "elapsed_time": "9:15:23", "remaining_time": "15:39:19"} |
|
{"current_steps": 150, "total_steps": 401, "loss": 1.7406, "accuracy": 0.65625, "learning_rate": 5.10802218840331e-07, "epoch": 0.3740065451145395, "percentage": 37.41, "elapsed_time": "9:19:27", "remaining_time": "15:36:09"} |
|
{"current_steps": 151, "total_steps": 401, "loss": 2.0385, "accuracy": 0.625, "learning_rate": 5.0826016754894e-07, "epoch": 0.37649992208196975, "percentage": 37.66, "elapsed_time": "9:22:59", "remaining_time": "15:32:05"} |
|
{"current_steps": 152, "total_steps": 401, "loss": 2.4462, "accuracy": 0.4375, "learning_rate": 5.057075785170923e-07, "epoch": 0.37899329904940005, "percentage": 37.91, "elapsed_time": "9:27:23", "remaining_time": "15:29:29"} |
|
{"current_steps": 153, "total_steps": 401, "loss": 2.3192, "accuracy": 0.5625, "learning_rate": 5.031446217087223e-07, "epoch": 0.3814866760168303, "percentage": 38.15, "elapsed_time": "9:32:23", "remaining_time": "15:27:47"} |
|
{"current_steps": 154, "total_steps": 401, "loss": 1.1124, "accuracy": 0.625, "learning_rate": 5.005714677781016e-07, "epoch": 0.3839800529842606, "percentage": 38.4, "elapsed_time": "9:35:37", "remaining_time": "15:23:14"} |
|
{"current_steps": 155, "total_steps": 401, "loss": 1.6899, "accuracy": 0.71875, "learning_rate": 4.979882880584766e-07, "epoch": 0.3864734299516908, "percentage": 38.65, "elapsed_time": "9:38:49", "remaining_time": "15:18:39"} |
|
{"current_steps": 156, "total_steps": 401, "loss": 1.9121, "accuracy": 0.59375, "learning_rate": 4.953952545506602e-07, "epoch": 0.3889668069191211, "percentage": 38.9, "elapsed_time": "9:42:57", "remaining_time": "15:15:32"} |
|
{"current_steps": 157, "total_steps": 401, "loss": 2.2898, "accuracy": 0.625, "learning_rate": 4.927925399115788e-07, "epoch": 0.39146018388655135, "percentage": 39.15, "elapsed_time": "9:46:34", "remaining_time": "15:11:37"} |
|
{"current_steps": 158, "total_steps": 401, "loss": 1.1016, "accuracy": 0.625, "learning_rate": 4.901803174427757e-07, "epoch": 0.3939535608539816, "percentage": 39.4, "elapsed_time": "9:49:40", "remaining_time": "15:06:53"} |
|
{"current_steps": 159, "total_steps": 401, "loss": 2.5663, "accuracy": 0.5625, "learning_rate": 4.875587610788733e-07, "epoch": 0.3964469378214119, "percentage": 39.65, "elapsed_time": "9:53:40", "remaining_time": "15:03:34"} |
|
{"current_steps": 160, "total_steps": 401, "loss": 1.2244, "accuracy": 0.6875, "learning_rate": 4.849280453759897e-07, "epoch": 0.3989403147888421, "percentage": 39.9, "elapsed_time": "9:57:27", "remaining_time": "14:59:55"} |
|
{"current_steps": 161, "total_steps": 401, "loss": 2.0259, "accuracy": 0.625, "learning_rate": 4.822883455001173e-07, "epoch": 0.4014336917562724, "percentage": 40.15, "elapsed_time": "10:00:38", "remaining_time": "14:55:21"} |
|
{"current_steps": 162, "total_steps": 401, "loss": 1.4698, "accuracy": 0.65625, "learning_rate": 4.796398372154588e-07, "epoch": 0.40392706872370265, "percentage": 40.4, "elapsed_time": "10:03:36", "remaining_time": "14:50:29"} |
|
{"current_steps": 163, "total_steps": 401, "loss": 1.3586, "accuracy": 0.625, "learning_rate": 4.769826968727243e-07, "epoch": 0.40642044569113295, "percentage": 40.65, "elapsed_time": "10:06:43", "remaining_time": "14:45:53"} |
|
{"current_steps": 164, "total_steps": 401, "loss": 1.447, "accuracy": 0.6875, "learning_rate": 4.743171013973885e-07, "epoch": 0.4089138226585632, "percentage": 40.9, "elapsed_time": "10:09:31", "remaining_time": "14:40:50"} |
|
{"current_steps": 165, "total_steps": 401, "loss": 1.4126, "accuracy": 0.71875, "learning_rate": 4.716432282779106e-07, "epoch": 0.4114071996259935, "percentage": 41.15, "elapsed_time": "10:12:56", "remaining_time": "14:36:41"} |
|
{"current_steps": 166, "total_steps": 401, "loss": 1.436, "accuracy": 0.625, "learning_rate": 4.6896125555391575e-07, "epoch": 0.4139005765934237, "percentage": 41.4, "elapsed_time": "10:16:21", "remaining_time": "14:32:33"} |
|
{"current_steps": 167, "total_steps": 401, "loss": 1.3431, "accuracy": 0.65625, "learning_rate": 4.662713618043413e-07, "epoch": 0.41639395356085396, "percentage": 41.65, "elapsed_time": "10:20:46", "remaining_time": "14:29:50"} |
|
{"current_steps": 168, "total_steps": 401, "loss": 1.7514, "accuracy": 0.53125, "learning_rate": 4.635737261355447e-07, "epoch": 0.41888733052828425, "percentage": 41.9, "elapsed_time": "10:24:58", "remaining_time": "14:26:46"} |
|
{"current_steps": 169, "total_steps": 401, "loss": 2.6762, "accuracy": 0.53125, "learning_rate": 4.608685281693789e-07, "epoch": 0.4213807074957145, "percentage": 42.14, "elapsed_time": "10:28:35", "remaining_time": "14:22:55"} |
|
{"current_steps": 170, "total_steps": 401, "loss": 1.3681, "accuracy": 0.71875, "learning_rate": 4.581559480312316e-07, "epoch": 0.4238740844631448, "percentage": 42.39, "elapsed_time": "10:30:51", "remaining_time": "14:17:13"} |
|
{"current_steps": 171, "total_steps": 401, "loss": 1.899, "accuracy": 0.53125, "learning_rate": 4.5543616633803197e-07, "epoch": 0.426367461430575, "percentage": 42.64, "elapsed_time": "10:34:11", "remaining_time": "14:13:00"} |
|
{"current_steps": 172, "total_steps": 401, "loss": 1.4364, "accuracy": 0.65625, "learning_rate": 4.527093641862241e-07, "epoch": 0.4288608383980053, "percentage": 42.89, "elapsed_time": "10:37:50", "remaining_time": "14:09:13"} |
|
{"current_steps": 173, "total_steps": 401, "loss": 1.2708, "accuracy": 0.65625, "learning_rate": 4.499757231397087e-07, "epoch": 0.43135421536543556, "percentage": 43.14, "elapsed_time": "10:42:01", "remaining_time": "14:06:08"} |
|
{"current_steps": 174, "total_steps": 401, "loss": 0.8446, "accuracy": 0.75, "learning_rate": 4.4723542521775385e-07, "epoch": 0.43384759233286585, "percentage": 43.39, "elapsed_time": "10:45:56", "remaining_time": "14:02:41"} |
|
{"current_steps": 175, "total_steps": 401, "loss": 1.7344, "accuracy": 0.59375, "learning_rate": 4.444886528828749e-07, "epoch": 0.4363409693002961, "percentage": 43.64, "elapsed_time": "10:49:22", "remaining_time": "13:58:37"} |
|
{"current_steps": 176, "total_steps": 401, "loss": 1.8322, "accuracy": 0.6875, "learning_rate": 4.417355890286857e-07, "epoch": 0.4388343462677263, "percentage": 43.89, "elapsed_time": "10:54:08", "remaining_time": "13:56:16"} |
|
{"current_steps": 177, "total_steps": 401, "loss": 1.2998, "accuracy": 0.65625, "learning_rate": 4.389764169677205e-07, "epoch": 0.4413277232351566, "percentage": 44.14, "elapsed_time": "10:57:05", "remaining_time": "13:51:34"} |
|
{"current_steps": 178, "total_steps": 401, "loss": 1.2671, "accuracy": 0.625, "learning_rate": 4.3621132041922745e-07, "epoch": 0.44382110020258686, "percentage": 44.39, "elapsed_time": "11:00:59", "remaining_time": "13:48:05"} |
|
{"current_steps": 179, "total_steps": 401, "loss": 1.3614, "accuracy": 0.59375, "learning_rate": 4.334404834969368e-07, "epoch": 0.44631447717001715, "percentage": 44.64, "elapsed_time": "11:04:39", "remaining_time": "13:44:18"} |
|
{"current_steps": 180, "total_steps": 401, "loss": 0.5738, "accuracy": 0.875, "learning_rate": 4.306640906968011e-07, "epoch": 0.4488078541374474, "percentage": 44.89, "elapsed_time": "11:08:29", "remaining_time": "13:40:45"} |
|
{"current_steps": 181, "total_steps": 401, "loss": 1.0749, "accuracy": 0.6875, "learning_rate": 4.2788232688471e-07, "epoch": 0.4513012311048777, "percentage": 45.14, "elapsed_time": "11:12:21", "remaining_time": "13:37:14"} |
|
{"current_steps": 182, "total_steps": 401, "loss": 1.2853, "accuracy": 0.6875, "learning_rate": 4.2509537728418233e-07, "epoch": 0.4537946080723079, "percentage": 45.39, "elapsed_time": "11:15:41", "remaining_time": "13:33:03"} |
|
{"current_steps": 183, "total_steps": 401, "loss": 1.0034, "accuracy": 0.75, "learning_rate": 4.223034274640317e-07, "epoch": 0.4562879850397382, "percentage": 45.64, "elapsed_time": "11:20:57", "remaining_time": "13:31:11"} |
|
{"current_steps": 184, "total_steps": 401, "loss": 1.0082, "accuracy": 0.75, "learning_rate": 4.195066633260109e-07, "epoch": 0.45878136200716846, "percentage": 45.89, "elapsed_time": "11:25:01", "remaining_time": "13:27:53"} |
|
{"current_steps": 185, "total_steps": 401, "loss": 1.2603, "accuracy": 0.71875, "learning_rate": 4.1670527109243414e-07, "epoch": 0.4612747389745987, "percentage": 46.13, "elapsed_time": "11:29:16", "remaining_time": "13:24:46"} |
|
{"current_steps": 186, "total_steps": 401, "loss": 1.2028, "accuracy": 0.6875, "learning_rate": 4.138994372937766e-07, "epoch": 0.463768115942029, "percentage": 46.38, "elapsed_time": "11:33:21", "remaining_time": "13:21:28"} |
|
{"current_steps": 187, "total_steps": 401, "loss": 0.6391, "accuracy": 0.71875, "learning_rate": 4.110893487562548e-07, "epoch": 0.46626149290945923, "percentage": 46.63, "elapsed_time": "11:36:15", "remaining_time": "13:16:47"} |
|
{"current_steps": 188, "total_steps": 401, "loss": 0.9032, "accuracy": 0.71875, "learning_rate": 4.082751925893869e-07, "epoch": 0.4687548698768895, "percentage": 46.88, "elapsed_time": "11:39:39", "remaining_time": "13:12:42"} |
|
{"current_steps": 189, "total_steps": 401, "loss": 0.5996, "accuracy": 0.71875, "learning_rate": 4.054571561735334e-07, "epoch": 0.47124824684431976, "percentage": 47.13, "elapsed_time": "11:42:38", "remaining_time": "13:08:09"} |
|
{"current_steps": 190, "total_steps": 401, "loss": 1.0064, "accuracy": 0.71875, "learning_rate": 4.026354271474214e-07, "epoch": 0.47374162381175006, "percentage": 47.38, "elapsed_time": "11:45:53", "remaining_time": "13:03:54"} |
|
{"current_steps": 191, "total_steps": 401, "loss": 0.7511, "accuracy": 0.75, "learning_rate": 3.998101933956498e-07, "epoch": 0.4762350007791803, "percentage": 47.63, "elapsed_time": "11:49:29", "remaining_time": "13:00:03"} |
|
{"current_steps": 192, "total_steps": 401, "loss": 0.7146, "accuracy": 0.75, "learning_rate": 3.969816430361794e-07, "epoch": 0.4787283777466106, "percentage": 47.88, "elapsed_time": "11:54:31", "remaining_time": "12:57:47"} |
|
{"current_steps": 193, "total_steps": 401, "loss": 1.046, "accuracy": 0.71875, "learning_rate": 3.9414996440780724e-07, "epoch": 0.48122175471404083, "percentage": 48.13, "elapsed_time": "11:58:58", "remaining_time": "12:54:51"} |
|
{"current_steps": 194, "total_steps": 401, "loss": 1.0144, "accuracy": 0.75, "learning_rate": 3.913153460576256e-07, "epoch": 0.48371513168147107, "percentage": 48.38, "elapsed_time": "12:03:44", "remaining_time": "12:52:14"} |
|
{"current_steps": 195, "total_steps": 401, "loss": 0.3528, "accuracy": 0.875, "learning_rate": 3.8847797672846825e-07, "epoch": 0.48620850864890136, "percentage": 48.63, "elapsed_time": "12:07:23", "remaining_time": "12:48:25"} |
|
{"current_steps": 196, "total_steps": 401, "loss": 0.533, "accuracy": 0.8125, "learning_rate": 3.8563804534634246e-07, "epoch": 0.4887018856163316, "percentage": 48.88, "elapsed_time": "12:11:08", "remaining_time": "12:44:43"} |
|
{"current_steps": 197, "total_steps": 401, "loss": 0.7652, "accuracy": 0.75, "learning_rate": 3.827957410078494e-07, "epoch": 0.4911952625837619, "percentage": 49.13, "elapsed_time": "12:15:31", "remaining_time": "12:41:39"} |
|
{"current_steps": 198, "total_steps": 401, "loss": 0.6624, "accuracy": 0.875, "learning_rate": 3.799512529675939e-07, "epoch": 0.49368863955119213, "percentage": 49.38, "elapsed_time": "12:19:13", "remaining_time": "12:37:54"} |
|
{"current_steps": 199, "total_steps": 401, "loss": 0.9539, "accuracy": 0.65625, "learning_rate": 3.7710477062558195e-07, "epoch": 0.4961820165186224, "percentage": 49.63, "elapsed_time": "12:23:38", "remaining_time": "12:34:51"} |
|
{"current_steps": 200, "total_steps": 401, "loss": 0.5224, "accuracy": 0.84375, "learning_rate": 3.742564835146099e-07, "epoch": 0.49867539348605266, "percentage": 49.88, "elapsed_time": "12:28:37", "remaining_time": "12:32:21"} |
|
{"current_steps": 201, "total_steps": 401, "loss": 0.6145, "accuracy": 0.78125, "learning_rate": 3.71406581287645e-07, "epoch": 0.501168770453483, "percentage": 50.12, "elapsed_time": "12:33:24", "remaining_time": "12:29:39"} |
|
{"current_steps": 202, "total_steps": 401, "loss": 0.5184, "accuracy": 0.78125, "learning_rate": 3.6855525370519617e-07, "epoch": 0.5036621474209132, "percentage": 50.37, "elapsed_time": "12:37:26", "remaining_time": "12:26:11"} |
|
{"current_steps": 203, "total_steps": 401, "loss": 0.6896, "accuracy": 0.8125, "learning_rate": 3.6570269062268025e-07, "epoch": 0.5061555243883434, "percentage": 50.62, "elapsed_time": "12:41:21", "remaining_time": "12:22:36"} |
|
{"current_steps": 204, "total_steps": 401, "loss": 0.4037, "accuracy": 0.84375, "learning_rate": 3.6284908197777915e-07, "epoch": 0.5086489013557737, "percentage": 50.87, "elapsed_time": "12:44:48", "remaining_time": "12:18:33"} |
|
{"current_steps": 205, "total_steps": 401, "loss": 0.4034, "accuracy": 0.84375, "learning_rate": 3.599946177777936e-07, "epoch": 0.511142278323204, "percentage": 51.12, "elapsed_time": "12:47:40", "remaining_time": "12:13:58"} |
|
{"current_steps": 206, "total_steps": 401, "loss": 0.633, "accuracy": 0.78125, "learning_rate": 3.571394880869919e-07, "epoch": 0.5136356552906343, "percentage": 51.37, "elapsed_time": "12:50:43", "remaining_time": "12:09:34"} |
|
{"current_steps": 207, "total_steps": 401, "loss": 0.5043, "accuracy": 0.78125, "learning_rate": 3.5428388301395325e-07, "epoch": 0.5161290322580645, "percentage": 51.62, "elapsed_time": "12:54:37", "remaining_time": "12:05:58"} |
|
{"current_steps": 208, "total_steps": 401, "loss": 0.5437, "accuracy": 0.84375, "learning_rate": 3.514279926989105e-07, "epoch": 0.5186224092254947, "percentage": 51.87, "elapsed_time": "12:57:36", "remaining_time": "12:01:31"} |
|
{"current_steps": 209, "total_steps": 401, "loss": 0.513, "accuracy": 0.78125, "learning_rate": 3.485720073010896e-07, "epoch": 0.5211157861929251, "percentage": 52.12, "elapsed_time": "13:02:03", "remaining_time": "11:58:26"} |
|
{"current_steps": 210, "total_steps": 401, "loss": 0.5155, "accuracy": 0.84375, "learning_rate": 3.457161169860469e-07, "epoch": 0.5236091631603553, "percentage": 52.37, "elapsed_time": "13:04:56", "remaining_time": "11:53:55"} |
|
{"current_steps": 211, "total_steps": 401, "loss": 0.2783, "accuracy": 0.875, "learning_rate": 3.428605119130082e-07, "epoch": 0.5261025401277856, "percentage": 52.62, "elapsed_time": "13:08:19", "remaining_time": "11:49:52"} |
|
{"current_steps": 212, "total_steps": 401, "loss": 0.4837, "accuracy": 0.84375, "learning_rate": 3.4000538222220635e-07, "epoch": 0.5285959170952158, "percentage": 52.87, "elapsed_time": "13:11:56", "remaining_time": "11:46:01"} |
|
{"current_steps": 213, "total_steps": 401, "loss": 0.216, "accuracy": 0.875, "learning_rate": 3.37150918022221e-07, "epoch": 0.531089294062646, "percentage": 53.12, "elapsed_time": "13:15:21", "remaining_time": "11:42:00"} |
|
{"current_steps": 214, "total_steps": 401, "loss": 0.3747, "accuracy": 0.90625, "learning_rate": 3.342973093773199e-07, "epoch": 0.5335826710300764, "percentage": 53.37, "elapsed_time": "13:19:18", "remaining_time": "11:38:27"} |
|
{"current_steps": 215, "total_steps": 401, "loss": 0.5245, "accuracy": 0.875, "learning_rate": 3.314447462948038e-07, "epoch": 0.5360760479975066, "percentage": 53.62, "elapsed_time": "13:23:58", "remaining_time": "11:35:32"} |
|
{"current_steps": 216, "total_steps": 401, "loss": 0.9085, "accuracy": 0.71875, "learning_rate": 3.285934187123551e-07, "epoch": 0.5385694249649369, "percentage": 53.87, "elapsed_time": "13:27:05", "remaining_time": "11:31:15"} |
|
{"current_steps": 217, "total_steps": 401, "loss": 0.7279, "accuracy": 0.78125, "learning_rate": 3.2574351648539017e-07, "epoch": 0.5410628019323671, "percentage": 54.11, "elapsed_time": "13:30:16", "remaining_time": "11:27:03"} |
|
{"current_steps": 218, "total_steps": 401, "loss": 0.6031, "accuracy": 0.8125, "learning_rate": 3.228952293744181e-07, "epoch": 0.5435561788997975, "percentage": 54.36, "elapsed_time": "13:33:51", "remaining_time": "11:23:11"} |
|
{"current_steps": 219, "total_steps": 401, "loss": 0.4743, "accuracy": 0.8125, "learning_rate": 3.200487470324062e-07, "epoch": 0.5460495558672277, "percentage": 54.61, "elapsed_time": "13:36:47", "remaining_time": "11:18:47"} |
|
{"current_steps": 220, "total_steps": 401, "loss": 0.6666, "accuracy": 0.71875, "learning_rate": 3.172042589921506e-07, "epoch": 0.5485429328346579, "percentage": 54.86, "elapsed_time": "13:40:15", "remaining_time": "11:14:50"} |
|
{"current_steps": 221, "total_steps": 401, "loss": 0.5698, "accuracy": 0.84375, "learning_rate": 3.1436195465365767e-07, "epoch": 0.5510363098020882, "percentage": 55.11, "elapsed_time": "13:44:39", "remaining_time": "11:11:40"} |
|
{"current_steps": 222, "total_steps": 401, "loss": 0.645, "accuracy": 0.78125, "learning_rate": 3.115220232715318e-07, "epoch": 0.5535296867695184, "percentage": 55.36, "elapsed_time": "13:47:43", "remaining_time": "11:07:23"} |
|
{"current_steps": 223, "total_steps": 401, "loss": 0.584, "accuracy": 0.875, "learning_rate": 3.086846539423744e-07, "epoch": 0.5560230637369488, "percentage": 55.61, "elapsed_time": "13:50:33", "remaining_time": "11:02:57"} |
|
{"current_steps": 224, "total_steps": 401, "loss": 0.6203, "accuracy": 0.8125, "learning_rate": 3.0585003559219284e-07, "epoch": 0.558516440704379, "percentage": 55.86, "elapsed_time": "13:53:13", "remaining_time": "10:58:24"} |
|
{"current_steps": 225, "total_steps": 401, "loss": 0.2763, "accuracy": 0.875, "learning_rate": 3.030183569638207e-07, "epoch": 0.5610098176718092, "percentage": 56.11, "elapsed_time": "13:57:32", "remaining_time": "10:55:08"} |
|
{"current_steps": 226, "total_steps": 401, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 3.001898066043502e-07, "epoch": 0.5635031946392395, "percentage": 56.36, "elapsed_time": "14:00:17", "remaining_time": "10:50:40"} |
|
{"current_steps": 227, "total_steps": 401, "loss": 0.3709, "accuracy": 0.875, "learning_rate": 2.973645728525786e-07, "epoch": 0.5659965716066698, "percentage": 56.61, "elapsed_time": "14:05:16", "remaining_time": "10:47:54"} |
|
{"current_steps": 228, "total_steps": 401, "loss": 0.7344, "accuracy": 0.84375, "learning_rate": 2.9454284382646654e-07, "epoch": 0.5684899485741001, "percentage": 56.86, "elapsed_time": "14:09:01", "remaining_time": "10:44:12"} |
|
{"current_steps": 229, "total_steps": 401, "loss": 0.46, "accuracy": 0.84375, "learning_rate": 2.917248074106132e-07, "epoch": 0.5709833255415303, "percentage": 57.11, "elapsed_time": "14:12:56", "remaining_time": "10:40:38"} |
|
{"current_steps": 230, "total_steps": 401, "loss": 0.454, "accuracy": 0.8125, "learning_rate": 2.889106512437452e-07, "epoch": 0.5734767025089605, "percentage": 57.36, "elapsed_time": "14:17:39", "remaining_time": "10:37:39"} |
|
{"current_steps": 231, "total_steps": 401, "loss": 0.4413, "accuracy": 0.8125, "learning_rate": 2.8610056270622344e-07, "epoch": 0.5759700794763908, "percentage": 57.61, "elapsed_time": "14:20:41", "remaining_time": "10:33:24"} |
|
{"current_steps": 232, "total_steps": 401, "loss": 0.8093, "accuracy": 0.8125, "learning_rate": 2.8329472890756593e-07, "epoch": 0.5784634564438211, "percentage": 57.86, "elapsed_time": "14:23:46", "remaining_time": "10:29:13"} |
|
{"current_steps": 233, "total_steps": 401, "loss": 0.6597, "accuracy": 0.875, "learning_rate": 2.8049333667398917e-07, "epoch": 0.5809568334112514, "percentage": 58.1, "elapsed_time": "14:27:29", "remaining_time": "10:25:29"} |
|
{"current_steps": 234, "total_steps": 401, "loss": 0.6318, "accuracy": 0.84375, "learning_rate": 2.776965725359684e-07, "epoch": 0.5834502103786816, "percentage": 58.35, "elapsed_time": "14:31:46", "remaining_time": "10:22:09"} |
|
{"current_steps": 235, "total_steps": 401, "loss": 0.7813, "accuracy": 0.8125, "learning_rate": 2.7490462271581774e-07, "epoch": 0.5859435873461118, "percentage": 58.6, "elapsed_time": "14:35:33", "remaining_time": "10:18:29"} |
|
{"current_steps": 236, "total_steps": 401, "loss": 0.7349, "accuracy": 0.75, "learning_rate": 2.7211767311529e-07, "epoch": 0.5884369643135422, "percentage": 58.85, "elapsed_time": "14:40:56", "remaining_time": "10:15:54"} |
|
{"current_steps": 237, "total_steps": 401, "loss": 0.4904, "accuracy": 0.75, "learning_rate": 2.6933590930319903e-07, "epoch": 0.5909303412809724, "percentage": 59.1, "elapsed_time": "14:46:01", "remaining_time": "10:13:06"} |
|
{"current_steps": 238, "total_steps": 401, "loss": 0.0719, "accuracy": 0.96875, "learning_rate": 2.665595165030632e-07, "epoch": 0.5934237182484027, "percentage": 59.35, "elapsed_time": "14:50:57", "remaining_time": "10:10:11"} |
|
{"current_steps": 239, "total_steps": 401, "loss": 0.3052, "accuracy": 0.875, "learning_rate": 2.637886795807726e-07, "epoch": 0.5959170952158329, "percentage": 59.6, "elapsed_time": "14:54:10", "remaining_time": "10:06:05"} |
|
{"current_steps": 240, "total_steps": 401, "loss": 0.713, "accuracy": 0.78125, "learning_rate": 2.6102358303227965e-07, "epoch": 0.5984104721832632, "percentage": 59.85, "elapsed_time": "14:58:26", "remaining_time": "10:02:42"} |
|
{"current_steps": 241, "total_steps": 401, "loss": 0.4917, "accuracy": 0.90625, "learning_rate": 2.5826441097131433e-07, "epoch": 0.6009038491506935, "percentage": 60.1, "elapsed_time": "15:01:46", "remaining_time": "9:58:41"} |
|
{"current_steps": 242, "total_steps": 401, "loss": 0.1984, "accuracy": 0.9375, "learning_rate": 2.555113471171251e-07, "epoch": 0.6033972261181237, "percentage": 60.35, "elapsed_time": "15:06:56", "remaining_time": "9:55:52"} |
|
{"current_steps": 243, "total_steps": 401, "loss": 0.3643, "accuracy": 0.90625, "learning_rate": 2.527645747822462e-07, "epoch": 0.605890603085554, "percentage": 60.6, "elapsed_time": "15:11:06", "remaining_time": "9:52:24"} |
|
{"current_steps": 244, "total_steps": 401, "loss": 0.5361, "accuracy": 0.75, "learning_rate": 2.5002427686029125e-07, "epoch": 0.6083839800529842, "percentage": 60.85, "elapsed_time": "15:15:23", "remaining_time": "9:49:00"} |
|
{"current_steps": 245, "total_steps": 401, "loss": 0.451, "accuracy": 0.84375, "learning_rate": 2.472906358137759e-07, "epoch": 0.6108773570204146, "percentage": 61.1, "elapsed_time": "15:20:11", "remaining_time": "9:45:55"} |
|
{"current_steps": 246, "total_steps": 401, "loss": 0.5163, "accuracy": 0.8125, "learning_rate": 2.445638336619681e-07, "epoch": 0.6133707339878448, "percentage": 61.35, "elapsed_time": "15:22:36", "remaining_time": "9:41:19"} |
|
{"current_steps": 247, "total_steps": 401, "loss": 0.6587, "accuracy": 0.71875, "learning_rate": 2.418440519687684e-07, "epoch": 0.615864110955275, "percentage": 61.6, "elapsed_time": "15:25:36", "remaining_time": "9:37:06"} |
|
{"current_steps": 248, "total_steps": 401, "loss": 0.6811, "accuracy": 0.8125, "learning_rate": 2.391314718306212e-07, "epoch": 0.6183574879227053, "percentage": 61.85, "elapsed_time": "15:30:35", "remaining_time": "9:34:07"} |
|
{"current_steps": 249, "total_steps": 401, "loss": 0.8157, "accuracy": 0.75, "learning_rate": 2.3642627386445537e-07, "epoch": 0.6208508648901355, "percentage": 62.09, "elapsed_time": "15:35:22", "remaining_time": "9:30:59"} |
|
{"current_steps": 250, "total_steps": 401, "loss": 0.4055, "accuracy": 0.8125, "learning_rate": 2.3372863819565868e-07, "epoch": 0.6233442418575659, "percentage": 62.34, "elapsed_time": "15:38:50", "remaining_time": "9:27:03"} |
|
{"current_steps": 251, "total_steps": 401, "loss": 0.2511, "accuracy": 0.875, "learning_rate": 2.310387444460842e-07, "epoch": 0.6258376188249961, "percentage": 62.59, "elapsed_time": "15:42:01", "remaining_time": "9:22:57"} |
|
{"current_steps": 252, "total_steps": 401, "loss": 0.4637, "accuracy": 0.84375, "learning_rate": 2.2835677172208942e-07, "epoch": 0.6283309957924264, "percentage": 62.84, "elapsed_time": "15:46:18", "remaining_time": "9:19:31"} |
|
{"current_steps": 253, "total_steps": 401, "loss": 0.4794, "accuracy": 0.8125, "learning_rate": 2.2568289860261148e-07, "epoch": 0.6308243727598566, "percentage": 63.09, "elapsed_time": "15:50:10", "remaining_time": "9:15:49"} |
|
{"current_steps": 254, "total_steps": 401, "loss": 0.5317, "accuracy": 0.84375, "learning_rate": 2.2301730312727568e-07, "epoch": 0.6333177497272869, "percentage": 63.34, "elapsed_time": "15:53:19", "remaining_time": "9:11:43"} |
|
{"current_steps": 255, "total_steps": 401, "loss": 0.1654, "accuracy": 0.90625, "learning_rate": 2.203601627845411e-07, "epoch": 0.6358111266947172, "percentage": 63.59, "elapsed_time": "15:56:24", "remaining_time": "9:07:35"} |
|
{"current_steps": 256, "total_steps": 401, "loss": 0.4198, "accuracy": 0.84375, "learning_rate": 2.1771165449988274e-07, "epoch": 0.6383045036621474, "percentage": 63.84, "elapsed_time": "15:59:08", "remaining_time": "9:03:15"} |
|
{"current_steps": 257, "total_steps": 401, "loss": 0.7281, "accuracy": 0.65625, "learning_rate": 2.1507195462401042e-07, "epoch": 0.6407978806295777, "percentage": 64.09, "elapsed_time": "16:02:18", "remaining_time": "8:59:11"} |
|
{"current_steps": 258, "total_steps": 401, "loss": 0.4588, "accuracy": 0.84375, "learning_rate": 2.1244123892112674e-07, "epoch": 0.6432912575970079, "percentage": 64.34, "elapsed_time": "16:06:00", "remaining_time": "8:55:25"} |
|
{"current_steps": 259, "total_steps": 401, "loss": 0.2964, "accuracy": 0.84375, "learning_rate": 2.0981968255722427e-07, "epoch": 0.6457846345644382, "percentage": 64.59, "elapsed_time": "16:09:17", "remaining_time": "8:51:25"} |
|
{"current_steps": 260, "total_steps": 401, "loss": 0.6586, "accuracy": 0.78125, "learning_rate": 2.072074600884213e-07, "epoch": 0.6482780115318685, "percentage": 64.84, "elapsed_time": "16:15:20", "remaining_time": "8:48:56"} |
|
{"current_steps": 261, "total_steps": 401, "loss": 0.423, "accuracy": 0.875, "learning_rate": 2.0460474544933978e-07, "epoch": 0.6507713884992987, "percentage": 65.09, "elapsed_time": "16:19:25", "remaining_time": "8:45:21"} |
|
{"current_steps": 262, "total_steps": 401, "loss": 0.3495, "accuracy": 0.875, "learning_rate": 2.020117119415233e-07, "epoch": 0.653264765466729, "percentage": 65.34, "elapsed_time": "16:23:37", "remaining_time": "8:41:50"} |
|
{"current_steps": 263, "total_steps": 401, "loss": 0.6096, "accuracy": 0.875, "learning_rate": 1.9942853222189841e-07, "epoch": 0.6557581424341593, "percentage": 65.59, "elapsed_time": "16:26:28", "remaining_time": "8:37:36"} |
|
{"current_steps": 264, "total_steps": 401, "loss": 0.625, "accuracy": 0.75, "learning_rate": 1.968553782912778e-07, "epoch": 0.6582515194015895, "percentage": 65.84, "elapsed_time": "16:29:19", "remaining_time": "8:33:23"} |
|
{"current_steps": 265, "total_steps": 401, "loss": 0.5431, "accuracy": 0.8125, "learning_rate": 1.942924214829077e-07, "epoch": 0.6607448963690198, "percentage": 66.08, "elapsed_time": "16:32:13", "remaining_time": "8:29:13"} |
|
{"current_steps": 266, "total_steps": 401, "loss": 0.2197, "accuracy": 0.90625, "learning_rate": 1.9173983245106005e-07, "epoch": 0.66323827333645, "percentage": 66.33, "elapsed_time": "16:36:12", "remaining_time": "8:25:35"} |
|
{"current_steps": 267, "total_steps": 401, "loss": 0.7786, "accuracy": 0.78125, "learning_rate": 1.891977811596689e-07, "epoch": 0.6657316503038803, "percentage": 66.58, "elapsed_time": "16:39:54", "remaining_time": "8:21:49"} |
|
{"current_steps": 268, "total_steps": 401, "loss": 0.2435, "accuracy": 0.90625, "learning_rate": 1.8666643687101418e-07, "epoch": 0.6682250272713106, "percentage": 66.83, "elapsed_time": "16:44:17", "remaining_time": "8:18:24"} |
|
{"current_steps": 269, "total_steps": 401, "loss": 0.4835, "accuracy": 0.78125, "learning_rate": 1.8414596813445047e-07, "epoch": 0.6707184042387409, "percentage": 67.08, "elapsed_time": "16:47:09", "remaining_time": "8:14:13"} |
|
{"current_steps": 270, "total_steps": 401, "loss": 0.357, "accuracy": 0.875, "learning_rate": 1.8163654277518476e-07, "epoch": 0.6732117812061711, "percentage": 67.33, "elapsed_time": "16:51:01", "remaining_time": "8:10:31"} |
|
{"current_steps": 271, "total_steps": 401, "loss": 0.3603, "accuracy": 0.875, "learning_rate": 1.7913832788310162e-07, "epoch": 0.6757051581736013, "percentage": 67.58, "elapsed_time": "16:54:32", "remaining_time": "8:06:40"} |
|
{"current_steps": 272, "total_steps": 401, "loss": 0.5412, "accuracy": 0.78125, "learning_rate": 1.7665148980163747e-07, "epoch": 0.6781985351410317, "percentage": 67.83, "elapsed_time": "16:57:38", "remaining_time": "8:02:37"} |
|
{"current_steps": 273, "total_steps": 401, "loss": 0.4379, "accuracy": 0.84375, "learning_rate": 1.741761941167051e-07, "epoch": 0.6806919121084619, "percentage": 68.08, "elapsed_time": "17:01:38", "remaining_time": "7:59:00"} |
|
{"current_steps": 274, "total_steps": 401, "loss": 0.4328, "accuracy": 0.84375, "learning_rate": 1.7171260564566735e-07, "epoch": 0.6831852890758922, "percentage": 68.33, "elapsed_time": "17:05:52", "remaining_time": "7:55:29"} |
|
{"current_steps": 275, "total_steps": 401, "loss": 0.34, "accuracy": 0.8125, "learning_rate": 1.6926088842636336e-07, "epoch": 0.6856786660433224, "percentage": 68.58, "elapsed_time": "17:09:35", "remaining_time": "7:51:44"} |
|
{"current_steps": 276, "total_steps": 401, "loss": 0.2784, "accuracy": 0.90625, "learning_rate": 1.6682120570618583e-07, "epoch": 0.6881720430107527, "percentage": 68.83, "elapsed_time": "17:12:27", "remaining_time": "7:47:36"} |
|
{"current_steps": 277, "total_steps": 401, "loss": 0.4693, "accuracy": 0.84375, "learning_rate": 1.6439371993121142e-07, "epoch": 0.690665419978183, "percentage": 69.08, "elapsed_time": "17:15:21", "remaining_time": "7:43:28"} |
|
{"current_steps": 278, "total_steps": 401, "loss": 0.3305, "accuracy": 0.78125, "learning_rate": 1.61978592735384e-07, "epoch": 0.6931587969456132, "percentage": 69.33, "elapsed_time": "17:18:43", "remaining_time": "7:39:34"} |
|
{"current_steps": 279, "total_steps": 401, "loss": 0.7058, "accuracy": 0.6875, "learning_rate": 1.595759849297528e-07, "epoch": 0.6956521739130435, "percentage": 69.58, "elapsed_time": "17:22:08", "remaining_time": "7:35:42"} |
|
{"current_steps": 280, "total_steps": 401, "loss": 0.4354, "accuracy": 0.84375, "learning_rate": 1.5718605649176415e-07, "epoch": 0.6981455508804737, "percentage": 69.83, "elapsed_time": "17:26:15", "remaining_time": "7:32:08"} |
|
{"current_steps": 281, "total_steps": 401, "loss": 0.4048, "accuracy": 0.8125, "learning_rate": 1.5480896655460975e-07, "epoch": 0.700638927847904, "percentage": 70.07, "elapsed_time": "17:30:21", "remaining_time": "7:28:33"} |
|
{"current_steps": 282, "total_steps": 401, "loss": 0.3597, "accuracy": 0.90625, "learning_rate": 1.5244487339663086e-07, "epoch": 0.7031323048153343, "percentage": 70.32, "elapsed_time": "17:34:01", "remaining_time": "7:24:46"} |
|
{"current_steps": 283, "total_steps": 401, "loss": 0.4867, "accuracy": 0.8125, "learning_rate": 1.5009393443077906e-07, "epoch": 0.7056256817827645, "percentage": 70.57, "elapsed_time": "17:36:25", "remaining_time": "7:20:29"} |
|
{"current_steps": 284, "total_steps": 401, "loss": 0.6619, "accuracy": 0.8125, "learning_rate": 1.477563061941355e-07, "epoch": 0.7081190587501948, "percentage": 70.82, "elapsed_time": "17:39:42", "remaining_time": "7:16:33"} |
|
{"current_steps": 285, "total_steps": 401, "loss": 0.4472, "accuracy": 0.84375, "learning_rate": 1.4543214433748714e-07, "epoch": 0.7106124357176251, "percentage": 71.07, "elapsed_time": "17:43:34", "remaining_time": "7:12:53"} |
|
{"current_steps": 286, "total_steps": 401, "loss": 0.5029, "accuracy": 0.84375, "learning_rate": 1.4312160361496325e-07, "epoch": 0.7131058126850554, "percentage": 71.32, "elapsed_time": "17:47:24", "remaining_time": "7:09:12"} |
|
{"current_steps": 287, "total_steps": 401, "loss": 0.8264, "accuracy": 0.75, "learning_rate": 1.4082483787373093e-07, "epoch": 0.7155991896524856, "percentage": 71.57, "elapsed_time": "17:51:51", "remaining_time": "7:05:45"} |
|
{"current_steps": 288, "total_steps": 401, "loss": 0.2918, "accuracy": 0.90625, "learning_rate": 1.3854200004375123e-07, "epoch": 0.7180925666199158, "percentage": 71.82, "elapsed_time": "17:56:11", "remaining_time": "7:02:15"} |
|
{"current_steps": 289, "total_steps": 401, "loss": 0.5103, "accuracy": 0.875, "learning_rate": 1.3627324212759662e-07, "epoch": 0.7205859435873461, "percentage": 72.07, "elapsed_time": "17:59:36", "remaining_time": "6:58:23"} |
|
{"current_steps": 290, "total_steps": 401, "loss": 0.4564, "accuracy": 0.78125, "learning_rate": 1.3401871519032942e-07, "epoch": 0.7230793205547764, "percentage": 72.32, "elapsed_time": "18:03:44", "remaining_time": "6:54:48"} |
|
{"current_steps": 291, "total_steps": 401, "loss": 0.5423, "accuracy": 0.78125, "learning_rate": 1.317785693494433e-07, "epoch": 0.7255726975222067, "percentage": 72.57, "elapsed_time": "18:06:39", "remaining_time": "6:50:45"} |
|
{"current_steps": 292, "total_steps": 401, "loss": 0.8689, "accuracy": 0.75, "learning_rate": 1.2955295376486793e-07, "epoch": 0.7280660744896369, "percentage": 72.82, "elapsed_time": "18:10:35", "remaining_time": "6:47:06"} |
|
{"current_steps": 293, "total_steps": 401, "loss": 0.5616, "accuracy": 0.78125, "learning_rate": 1.273420166290371e-07, "epoch": 0.7305594514570671, "percentage": 73.07, "elapsed_time": "18:14:32", "remaining_time": "6:43:26"} |
|
{"current_steps": 294, "total_steps": 401, "loss": 0.4787, "accuracy": 0.84375, "learning_rate": 1.2514590515702093e-07, "epoch": 0.7330528284244975, "percentage": 73.32, "elapsed_time": "18:17:35", "remaining_time": "6:39:27"} |
|
{"current_steps": 295, "total_steps": 401, "loss": 0.4696, "accuracy": 0.875, "learning_rate": 1.2296476557672452e-07, "epoch": 0.7355462053919277, "percentage": 73.57, "elapsed_time": "18:20:29", "remaining_time": "6:35:25"} |
|
{"current_steps": 296, "total_steps": 401, "loss": 0.5123, "accuracy": 0.78125, "learning_rate": 1.2079874311915026e-07, "epoch": 0.738039582359358, "percentage": 73.82, "elapsed_time": "18:24:44", "remaining_time": "6:31:53"} |
|
{"current_steps": 297, "total_steps": 401, "loss": 0.2544, "accuracy": 0.90625, "learning_rate": 1.1864798200872824e-07, "epoch": 0.7405329593267882, "percentage": 74.06, "elapsed_time": "18:28:15", "remaining_time": "6:28:04"} |
|
{"current_steps": 298, "total_steps": 401, "loss": 0.3429, "accuracy": 0.90625, "learning_rate": 1.1651262545371318e-07, "epoch": 0.7430263362942184, "percentage": 74.31, "elapsed_time": "18:30:37", "remaining_time": "6:23:52"} |
|
{"current_steps": 299, "total_steps": 401, "loss": 0.2416, "accuracy": 0.9375, "learning_rate": 1.1439281563664836e-07, "epoch": 0.7455197132616488, "percentage": 74.56, "elapsed_time": "18:33:42", "remaining_time": "6:19:55"} |
|
{"current_steps": 300, "total_steps": 401, "loss": 0.6624, "accuracy": 0.8125, "learning_rate": 1.1228869370489933e-07, "epoch": 0.748013090229079, "percentage": 74.81, "elapsed_time": "18:36:07", "remaining_time": "6:15:45"} |
|
{"current_steps": 301, "total_steps": 401, "loss": 0.4094, "accuracy": 0.84375, "learning_rate": 1.1020039976125454e-07, "epoch": 0.7505064671965093, "percentage": 75.06, "elapsed_time": "18:39:36", "remaining_time": "6:11:57"} |
|
{"current_steps": 302, "total_steps": 401, "loss": 0.1915, "accuracy": 0.9375, "learning_rate": 1.0812807285459737e-07, "epoch": 0.7529998441639395, "percentage": 75.31, "elapsed_time": "18:43:12", "remaining_time": "6:08:12"} |
|
{"current_steps": 303, "total_steps": 401, "loss": 0.6321, "accuracy": 0.78125, "learning_rate": 1.0607185097064733e-07, "epoch": 0.7554932211313699, "percentage": 75.56, "elapsed_time": "18:46:13", "remaining_time": "6:04:15"} |
|
{"current_steps": 304, "total_steps": 401, "loss": 0.5017, "accuracy": 0.75, "learning_rate": 1.0403187102277212e-07, "epoch": 0.7579865980988001, "percentage": 75.81, "elapsed_time": "18:48:50", "remaining_time": "6:00:11"} |
|
{"current_steps": 305, "total_steps": 401, "loss": 0.4481, "accuracy": 0.84375, "learning_rate": 1.020082688428718e-07, "epoch": 0.7604799750662303, "percentage": 76.06, "elapsed_time": "18:53:26", "remaining_time": "5:56:45"} |
|
{"current_steps": 306, "total_steps": 401, "loss": 0.2918, "accuracy": 0.875, "learning_rate": 1.0000117917233373e-07, "epoch": 0.7629733520336606, "percentage": 76.31, "elapsed_time": "18:57:28", "remaining_time": "5:53:08"} |
|
{"current_steps": 307, "total_steps": 401, "loss": 0.7258, "accuracy": 0.71875, "learning_rate": 9.801073565306134e-08, "epoch": 0.7654667290010908, "percentage": 76.56, "elapsed_time": "19:00:38", "remaining_time": "5:49:15"} |
|
{"current_steps": 308, "total_steps": 401, "loss": 0.2911, "accuracy": 0.875, "learning_rate": 9.603707081857533e-08, "epoch": 0.7679601059685212, "percentage": 76.81, "elapsed_time": "19:04:27", "remaining_time": "5:45:33"} |
|
{"current_steps": 309, "total_steps": 401, "loss": 0.9953, "accuracy": 0.78125, "learning_rate": 9.40803160851891e-08, "epoch": 0.7704534829359514, "percentage": 77.06, "elapsed_time": "19:07:13", "remaining_time": "5:41:34"} |
|
{"current_steps": 310, "total_steps": 401, "loss": 0.4286, "accuracy": 0.9375, "learning_rate": 9.214060174325823e-08, "epoch": 0.7729468599033816, "percentage": 77.31, "elapsed_time": "19:10:39", "remaining_time": "5:37:46"} |
|
{"current_steps": 311, "total_steps": 401, "loss": 0.3889, "accuracy": 0.96875, "learning_rate": 9.021805694850552e-08, "epoch": 0.7754402368708119, "percentage": 77.56, "elapsed_time": "19:14:33", "remaining_time": "5:34:06"} |
|
{"current_steps": 312, "total_steps": 401, "loss": 0.4734, "accuracy": 0.875, "learning_rate": 8.831280971342049e-08, "epoch": 0.7779336138382422, "percentage": 77.81, "elapsed_time": "19:17:37", "remaining_time": "5:30:13"} |
|
{"current_steps": 313, "total_steps": 401, "loss": 0.6, "accuracy": 0.84375, "learning_rate": 8.642498689873619e-08, "epoch": 0.7804269908056725, "percentage": 78.05, "elapsed_time": "19:20:51", "remaining_time": "5:26:22"} |
|
{"current_steps": 314, "total_steps": 401, "loss": 0.2676, "accuracy": 0.875, "learning_rate": 8.45547142049821e-08, "epoch": 0.7829203677731027, "percentage": 78.3, "elapsed_time": "19:24:36", "remaining_time": "5:22:40"} |
|
{"current_steps": 315, "total_steps": 401, "loss": 0.4376, "accuracy": 0.84375, "learning_rate": 8.270211616411413e-08, "epoch": 0.7854137447405329, "percentage": 78.55, "elapsed_time": "19:27:33", "remaining_time": "5:18:45"} |
|
{"current_steps": 316, "total_steps": 401, "loss": 0.203, "accuracy": 0.90625, "learning_rate": 8.086731613122324e-08, "epoch": 0.7879071217079632, "percentage": 78.8, "elapsed_time": "19:31:19", "remaining_time": "5:15:04"} |
|
{"current_steps": 317, "total_steps": 401, "loss": 0.2101, "accuracy": 0.875, "learning_rate": 7.905043627632113e-08, "epoch": 0.7904004986753935, "percentage": 79.05, "elapsed_time": "19:35:35", "remaining_time": "5:11:30"} |
|
{"current_steps": 318, "total_steps": 401, "loss": 0.46, "accuracy": 0.84375, "learning_rate": 7.725159757620596e-08, "epoch": 0.7928938756428238, "percentage": 79.3, "elapsed_time": "19:41:00", "remaining_time": "5:08:14"} |
|
{"current_steps": 319, "total_steps": 401, "loss": 0.4226, "accuracy": 0.84375, "learning_rate": 7.547091980640708e-08, "epoch": 0.795387252610254, "percentage": 79.55, "elapsed_time": "19:44:39", "remaining_time": "5:04:31"} |
|
{"current_steps": 320, "total_steps": 401, "loss": 0.6237, "accuracy": 0.8125, "learning_rate": 7.370852153320973e-08, "epoch": 0.7978806295776842, "percentage": 79.8, "elapsed_time": "19:48:22", "remaining_time": "5:00:48"} |
|
{"current_steps": 321, "total_steps": 401, "loss": 0.2498, "accuracy": 0.90625, "learning_rate": 7.196452010576056e-08, "epoch": 0.8003740065451146, "percentage": 80.05, "elapsed_time": "19:52:17", "remaining_time": "4:57:08"} |
|
{"current_steps": 322, "total_steps": 401, "loss": 0.6349, "accuracy": 0.875, "learning_rate": 7.023903164825346e-08, "epoch": 0.8028673835125448, "percentage": 80.3, "elapsed_time": "19:54:21", "remaining_time": "4:53:01"} |
|
{"current_steps": 323, "total_steps": 401, "loss": 0.2766, "accuracy": 0.90625, "learning_rate": 6.853217105219782e-08, "epoch": 0.8053607604799751, "percentage": 80.55, "elapsed_time": "19:58:59", "remaining_time": "4:49:32"} |
|
{"current_steps": 324, "total_steps": 401, "loss": 0.6875, "accuracy": 0.78125, "learning_rate": 6.684405196876843e-08, "epoch": 0.8078541374474053, "percentage": 80.8, "elapsed_time": "20:02:45", "remaining_time": "4:45:50"} |
|
{"current_steps": 325, "total_steps": 401, "loss": 0.7636, "accuracy": 0.71875, "learning_rate": 6.517478680123776e-08, "epoch": 0.8103475144148355, "percentage": 81.05, "elapsed_time": "20:06:12", "remaining_time": "4:42:04"} |
|
{"current_steps": 326, "total_steps": 401, "loss": 0.3753, "accuracy": 0.875, "learning_rate": 6.352448669749224e-08, "epoch": 0.8128408913822659, "percentage": 81.3, "elapsed_time": "20:09:10", "remaining_time": "4:38:11"} |
|
{"current_steps": 327, "total_steps": 401, "loss": 0.4069, "accuracy": 0.84375, "learning_rate": 6.189326154263068e-08, "epoch": 0.8153342683496961, "percentage": 81.55, "elapsed_time": "20:12:41", "remaining_time": "4:34:25"} |
|
{"current_steps": 328, "total_steps": 401, "loss": 0.6928, "accuracy": 0.78125, "learning_rate": 6.028121995164812e-08, "epoch": 0.8178276453171264, "percentage": 81.8, "elapsed_time": "20:15:58", "remaining_time": "4:30:37"} |
|
{"current_steps": 329, "total_steps": 401, "loss": 0.3026, "accuracy": 0.875, "learning_rate": 5.868846926220346e-08, "epoch": 0.8203210222845566, "percentage": 82.04, "elapsed_time": "20:19:56", "remaining_time": "4:26:58"} |
|
{"current_steps": 330, "total_steps": 401, "loss": 0.3245, "accuracy": 0.875, "learning_rate": 5.7115115527472575e-08, "epoch": 0.822814399251987, "percentage": 82.29, "elapsed_time": "20:24:52", "remaining_time": "4:23:31"} |
|
{"current_steps": 331, "total_steps": 401, "loss": 0.4564, "accuracy": 0.84375, "learning_rate": 5.556126350908654e-08, "epoch": 0.8253077762194172, "percentage": 82.54, "elapsed_time": "20:28:43", "remaining_time": "4:19:51"} |
|
{"current_steps": 332, "total_steps": 401, "loss": 0.591, "accuracy": 0.75, "learning_rate": 5.402701667015655e-08, "epoch": 0.8278011531868474, "percentage": 82.79, "elapsed_time": "20:31:40", "remaining_time": "4:15:58"} |
|
{"current_steps": 333, "total_steps": 401, "loss": 0.4474, "accuracy": 0.875, "learning_rate": 5.2512477168384125e-08, "epoch": 0.8302945301542777, "percentage": 83.04, "elapsed_time": "20:37:40", "remaining_time": "4:12:44"} |
|
{"current_steps": 334, "total_steps": 401, "loss": 0.3182, "accuracy": 0.84375, "learning_rate": 5.101774584925959e-08, "epoch": 0.8327879071217079, "percentage": 83.29, "elapsed_time": "20:41:54", "remaining_time": "4:09:07"} |
|
{"current_steps": 335, "total_steps": 401, "loss": 0.2258, "accuracy": 0.875, "learning_rate": 4.9542922239346865e-08, "epoch": 0.8352812840891383, "percentage": 83.54, "elapsed_time": "20:45:04", "remaining_time": "4:05:17"} |
|
{"current_steps": 336, "total_steps": 401, "loss": 0.6176, "accuracy": 0.78125, "learning_rate": 4.8088104539656715e-08, "epoch": 0.8377746610565685, "percentage": 83.79, "elapsed_time": "20:50:38", "remaining_time": "4:01:56"} |
|
{"current_steps": 337, "total_steps": 401, "loss": 0.3432, "accuracy": 0.8125, "learning_rate": 4.665338961910819e-08, "epoch": 0.8402680380239987, "percentage": 84.04, "elapsed_time": "20:52:54", "remaining_time": "3:57:56"} |
|
{"current_steps": 338, "total_steps": 401, "loss": 0.4574, "accuracy": 0.84375, "learning_rate": 4.5238873008078036e-08, "epoch": 0.842761414991429, "percentage": 84.29, "elapsed_time": "20:56:02", "remaining_time": "3:54:06"} |
|
{"current_steps": 339, "total_steps": 401, "loss": 0.1509, "accuracy": 0.96875, "learning_rate": 4.38446488920405e-08, "epoch": 0.8452547919588593, "percentage": 84.54, "elapsed_time": "20:59:42", "remaining_time": "3:50:23"} |
|
{"current_steps": 340, "total_steps": 401, "loss": 0.9044, "accuracy": 0.71875, "learning_rate": 4.247081010529546e-08, "epoch": 0.8477481689262896, "percentage": 84.79, "elapsed_time": "21:03:12", "remaining_time": "3:46:38"} |
|
{"current_steps": 341, "total_steps": 401, "loss": 0.3345, "accuracy": 0.875, "learning_rate": 4.1117448124787594e-08, "epoch": 0.8502415458937198, "percentage": 85.04, "elapsed_time": "21:06:37", "remaining_time": "3:42:51"} |
|
{"current_steps": 342, "total_steps": 401, "loss": 0.7245, "accuracy": 0.71875, "learning_rate": 3.9784653064014826e-08, "epoch": 0.85273492286115, "percentage": 85.29, "elapsed_time": "21:10:55", "remaining_time": "3:39:15"} |
|
{"current_steps": 343, "total_steps": 401, "loss": 0.4466, "accuracy": 0.875, "learning_rate": 3.8472513667028556e-08, "epoch": 0.8552282998285803, "percentage": 85.54, "elapsed_time": "21:15:17", "remaining_time": "3:35:38"} |
|
{"current_steps": 344, "total_steps": 401, "loss": 0.4184, "accuracy": 0.875, "learning_rate": 3.7181117302524304e-08, "epoch": 0.8577216767960106, "percentage": 85.79, "elapsed_time": "21:17:44", "remaining_time": "3:31:43"} |
|
{"current_steps": 345, "total_steps": 401, "loss": 0.7877, "accuracy": 0.78125, "learning_rate": 3.591054995802462e-08, "epoch": 0.8602150537634409, "percentage": 86.03, "elapsed_time": "21:21:36", "remaining_time": "3:28:01"} |
|
{"current_steps": 346, "total_steps": 401, "loss": 0.5153, "accuracy": 0.8125, "learning_rate": 3.466089623415333e-08, "epoch": 0.8627084307308711, "percentage": 86.28, "elapsed_time": "21:24:28", "remaining_time": "3:24:10"} |
|
{"current_steps": 347, "total_steps": 401, "loss": 0.3429, "accuracy": 0.875, "learning_rate": 3.3432239339002654e-08, "epoch": 0.8652018076983014, "percentage": 86.53, "elapsed_time": "21:29:13", "remaining_time": "3:20:37"} |
|
{"current_steps": 348, "total_steps": 401, "loss": 0.3237, "accuracy": 0.90625, "learning_rate": 3.222466108259252e-08, "epoch": 0.8676951846657317, "percentage": 86.78, "elapsed_time": "21:31:37", "remaining_time": "3:16:42"} |
|
{"current_steps": 349, "total_steps": 401, "loss": 0.5309, "accuracy": 0.84375, "learning_rate": 3.10382418714235e-08, "epoch": 0.8701885616331619, "percentage": 87.03, "elapsed_time": "21:33:55", "remaining_time": "3:12:47"} |
|
{"current_steps": 350, "total_steps": 401, "loss": 0.3837, "accuracy": 0.84375, "learning_rate": 2.9873060703122815e-08, "epoch": 0.8726819386005922, "percentage": 87.28, "elapsed_time": "21:37:22", "remaining_time": "3:09:02"} |
|
{"current_steps": 351, "total_steps": 401, "loss": 0.5723, "accuracy": 0.84375, "learning_rate": 2.8729195161184243e-08, "epoch": 0.8751753155680224, "percentage": 87.53, "elapsed_time": "21:40:43", "remaining_time": "3:05:17"} |
|
{"current_steps": 352, "total_steps": 401, "loss": 0.7475, "accuracy": 0.75, "learning_rate": 2.7606721409802498e-08, "epoch": 0.8776686925354527, "percentage": 87.78, "elapsed_time": "21:45:05", "remaining_time": "3:01:40"} |
|
{"current_steps": 353, "total_steps": 401, "loss": 0.3673, "accuracy": 0.875, "learning_rate": 2.650571418880144e-08, "epoch": 0.880162069502883, "percentage": 88.03, "elapsed_time": "21:48:41", "remaining_time": "2:57:57"} |
|
{"current_steps": 354, "total_steps": 401, "loss": 0.2475, "accuracy": 0.90625, "learning_rate": 2.5426246808657902e-08, "epoch": 0.8826554464703132, "percentage": 88.28, "elapsed_time": "21:52:56", "remaining_time": "2:54:19"} |
|
{"current_steps": 355, "total_steps": 401, "loss": 0.2476, "accuracy": 0.875, "learning_rate": 2.4368391145620064e-08, "epoch": 0.8851488234377435, "percentage": 88.53, "elapsed_time": "21:56:54", "remaining_time": "2:50:38"} |
|
{"current_steps": 356, "total_steps": 401, "loss": 0.3004, "accuracy": 0.875, "learning_rate": 2.3332217636921637e-08, "epoch": 0.8876422004051737, "percentage": 88.78, "elapsed_time": "22:00:04", "remaining_time": "2:46:51"} |
|
{"current_steps": 357, "total_steps": 401, "loss": 0.8857, "accuracy": 0.71875, "learning_rate": 2.2317795276091977e-08, "epoch": 0.8901355773726041, "percentage": 89.03, "elapsed_time": "22:03:06", "remaining_time": "2:43:04"} |
|
{"current_steps": 358, "total_steps": 401, "loss": 0.4302, "accuracy": 0.84375, "learning_rate": 2.1325191608361908e-08, "epoch": 0.8926289543400343, "percentage": 89.28, "elapsed_time": "22:06:34", "remaining_time": "2:39:20"} |
|
{"current_steps": 359, "total_steps": 401, "loss": 0.4005, "accuracy": 0.78125, "learning_rate": 2.035447272616638e-08, "epoch": 0.8951223313074645, "percentage": 89.53, "elapsed_time": "22:11:19", "remaining_time": "2:35:45"} |
|
{"current_steps": 360, "total_steps": 401, "loss": 0.3153, "accuracy": 0.84375, "learning_rate": 1.9405703264743645e-08, "epoch": 0.8976157082748948, "percentage": 89.78, "elapsed_time": "22:14:53", "remaining_time": "2:32:01"} |
|
{"current_steps": 361, "total_steps": 401, "loss": 0.405, "accuracy": 0.90625, "learning_rate": 1.8478946397831535e-08, "epoch": 0.900109085242325, "percentage": 90.02, "elapsed_time": "22:18:31", "remaining_time": "2:28:18"} |
|
{"current_steps": 362, "total_steps": 401, "loss": 0.4212, "accuracy": 0.78125, "learning_rate": 1.7574263833461018e-08, "epoch": 0.9026024622097554, "percentage": 90.27, "elapsed_time": "22:23:02", "remaining_time": "2:24:41"} |
|
{"current_steps": 363, "total_steps": 401, "loss": 0.6361, "accuracy": 0.71875, "learning_rate": 1.6691715809847622e-08, "epoch": 0.9050958391771856, "percentage": 90.52, "elapsed_time": "22:26:18", "remaining_time": "2:20:56"} |
|
{"current_steps": 364, "total_steps": 401, "loss": 0.7706, "accuracy": 0.65625, "learning_rate": 1.5831361091380085e-08, "epoch": 0.9075892161446159, "percentage": 90.77, "elapsed_time": "22:29:09", "remaining_time": "2:17:08"} |
|
{"current_steps": 365, "total_steps": 401, "loss": 0.6938, "accuracy": 0.71875, "learning_rate": 1.4993256964707667e-08, "epoch": 0.9100825931120461, "percentage": 91.02, "elapsed_time": "22:32:42", "remaining_time": "2:13:25"} |
|
{"current_steps": 366, "total_steps": 401, "loss": 0.74, "accuracy": 0.625, "learning_rate": 1.4177459234925959e-08, "epoch": 0.9125759700794764, "percentage": 91.27, "elapsed_time": "22:36:31", "remaining_time": "2:09:43"} |
|
{"current_steps": 367, "total_steps": 401, "loss": 0.1929, "accuracy": 0.9375, "learning_rate": 1.3384022221860707e-08, "epoch": 0.9150693470469067, "percentage": 91.52, "elapsed_time": "22:41:55", "remaining_time": "2:06:10"} |
|
{"current_steps": 368, "total_steps": 401, "loss": 0.6755, "accuracy": 0.71875, "learning_rate": 1.2612998756451366e-08, "epoch": 0.9175627240143369, "percentage": 91.77, "elapsed_time": "22:44:56", "remaining_time": "2:02:23"} |
|
{"current_steps": 369, "total_steps": 401, "loss": 0.3354, "accuracy": 0.875, "learning_rate": 1.1864440177232976e-08, "epoch": 0.9200561009817672, "percentage": 92.02, "elapsed_time": "22:48:36", "remaining_time": "1:58:41"} |
|
{"current_steps": 370, "total_steps": 401, "loss": 0.438, "accuracy": 0.90625, "learning_rate": 1.1138396326917977e-08, "epoch": 0.9225494779491974, "percentage": 92.27, "elapsed_time": "22:52:00", "remaining_time": "1:54:57"} |
|
{"current_steps": 371, "total_steps": 401, "loss": 0.2515, "accuracy": 0.875, "learning_rate": 1.0434915549077461e-08, "epoch": 0.9250428549166277, "percentage": 92.52, "elapsed_time": "22:55:31", "remaining_time": "1:51:13"} |
|
{"current_steps": 372, "total_steps": 401, "loss": 0.2881, "accuracy": 0.875, "learning_rate": 9.754044684922053e-09, "epoch": 0.927536231884058, "percentage": 92.77, "elapsed_time": "22:59:49", "remaining_time": "1:47:34"} |
|
{"current_steps": 373, "total_steps": 401, "loss": 0.8543, "accuracy": 0.78125, "learning_rate": 9.095829070183286e-09, "epoch": 0.9300296088514882, "percentage": 93.02, "elapsed_time": "23:03:24", "remaining_time": "1:43:50"} |
|
{"current_steps": 374, "total_steps": 401, "loss": 0.3512, "accuracy": 0.875, "learning_rate": 8.460312532094555e-09, "epoch": 0.9325229858189185, "percentage": 93.27, "elapsed_time": "23:06:27", "remaining_time": "1:40:05"} |
|
{"current_steps": 375, "total_steps": 401, "loss": 0.4176, "accuracy": 0.84375, "learning_rate": 7.847537386473157e-09, "epoch": 0.9350163627863488, "percentage": 93.52, "elapsed_time": "23:10:01", "remaining_time": "1:36:22"} |
|
{"current_steps": 376, "total_steps": 401, "loss": 0.4299, "accuracy": 0.78125, "learning_rate": 7.257544434902646e-09, "epoch": 0.937509739753779, "percentage": 93.77, "elapsed_time": "23:14:33", "remaining_time": "1:32:43"} |
|
{"current_steps": 377, "total_steps": 401, "loss": 0.835, "accuracy": 0.78125, "learning_rate": 6.690372962015922e-09, "epoch": 0.9400031167212093, "percentage": 94.01, "elapsed_time": "23:18:38", "remaining_time": "1:29:02"} |
|
{"current_steps": 378, "total_steps": 401, "loss": 0.711, "accuracy": 0.6875, "learning_rate": 6.146060732879643e-09, "epoch": 0.9424964936886395, "percentage": 94.26, "elapsed_time": "23:21:31", "remaining_time": "1:25:16"} |
|
{"current_steps": 379, "total_steps": 401, "loss": 0.9569, "accuracy": 0.75, "learning_rate": 5.624643990479616e-09, "epoch": 0.9449898706560698, "percentage": 94.51, "elapsed_time": "23:25:57", "remaining_time": "1:21:36"} |
|
{"current_steps": 380, "total_steps": 401, "loss": 0.3206, "accuracy": 0.90625, "learning_rate": 5.126157453307456e-09, "epoch": 0.9474832476235001, "percentage": 94.76, "elapsed_time": "23:30:15", "remaining_time": "1:17:56"} |
|
{"current_steps": 381, "total_steps": 401, "loss": 0.2126, "accuracy": 0.875, "learning_rate": 4.6506343130488956e-09, "epoch": 0.9499766245909304, "percentage": 95.01, "elapsed_time": "23:33:54", "remaining_time": "1:14:13"} |
|
{"current_steps": 382, "total_steps": 401, "loss": 0.6156, "accuracy": 0.84375, "learning_rate": 4.198106232373788e-09, "epoch": 0.9524700015583606, "percentage": 95.26, "elapsed_time": "23:38:08", "remaining_time": "1:10:32"} |
|
{"current_steps": 383, "total_steps": 401, "loss": 0.2725, "accuracy": 0.875, "learning_rate": 3.768603342827719e-09, "epoch": 0.9549633785257908, "percentage": 95.51, "elapsed_time": "23:42:42", "remaining_time": "1:06:51"} |
|
{"current_steps": 384, "total_steps": 401, "loss": 0.2374, "accuracy": 0.90625, "learning_rate": 3.3621542428259764e-09, "epoch": 0.9574567554932212, "percentage": 95.76, "elapsed_time": "23:46:42", "remaining_time": "1:03:09"} |
|
{"current_steps": 385, "total_steps": 401, "loss": 1.0033, "accuracy": 0.71875, "learning_rate": 2.978785995748928e-09, "epoch": 0.9599501324606514, "percentage": 96.01, "elapsed_time": "23:49:53", "remaining_time": "0:59:25"} |
|
{"current_steps": 386, "total_steps": 401, "loss": 0.4523, "accuracy": 0.875, "learning_rate": 2.618524128140309e-09, "epoch": 0.9624435094280817, "percentage": 96.26, "elapsed_time": "23:53:59", "remaining_time": "0:55:43"} |
|
{"current_steps": 387, "total_steps": 401, "loss": 0.6813, "accuracy": 0.75, "learning_rate": 2.2813926280074225e-09, "epoch": 0.9649368863955119, "percentage": 96.51, "elapsed_time": "23:57:36", "remaining_time": "0:52:00"} |
|
{"current_steps": 388, "total_steps": 401, "loss": 0.2141, "accuracy": 0.90625, "learning_rate": 1.9674139432240056e-09, "epoch": 0.9674302633629421, "percentage": 96.76, "elapsed_time": "1 day, 0:01:48", "remaining_time": "0:48:18"} |
|
{"current_steps": 389, "total_steps": 401, "loss": 0.2019, "accuracy": 0.9375, "learning_rate": 1.6766089800352934e-09, "epoch": 0.9699236403303725, "percentage": 97.01, "elapsed_time": "1 day, 0:04:40", "remaining_time": "0:44:33"} |
|
{"current_steps": 390, "total_steps": 401, "loss": 0.1869, "accuracy": 0.90625, "learning_rate": 1.408997101666326e-09, "epoch": 0.9724170172978027, "percentage": 97.26, "elapsed_time": "1 day, 0:09:15", "remaining_time": "0:40:52"} |
|
{"current_steps": 391, "total_steps": 401, "loss": 0.3026, "accuracy": 0.875, "learning_rate": 1.1645961270323746e-09, "epoch": 0.974910394265233, "percentage": 97.51, "elapsed_time": "1 day, 0:12:03", "remaining_time": "0:37:08"} |
|
{"current_steps": 392, "total_steps": 401, "loss": 0.421, "accuracy": 0.9375, "learning_rate": 9.434223295524958e-10, "epoch": 0.9774037712326632, "percentage": 97.76, "elapsed_time": "1 day, 0:16:58", "remaining_time": "0:33:27"} |
|
{"current_steps": 393, "total_steps": 401, "loss": 0.6381, "accuracy": 0.78125, "learning_rate": 7.454904360661762e-10, "epoch": 0.9798971482000935, "percentage": 98.0, "elapsed_time": "1 day, 0:21:26", "remaining_time": "0:29:44"} |
|
{"current_steps": 394, "total_steps": 401, "loss": 0.4579, "accuracy": 0.84375, "learning_rate": 5.708136258525231e-10, "epoch": 0.9823905251675238, "percentage": 98.25, "elapsed_time": "1 day, 0:24:42", "remaining_time": "0:26:01"} |
|
{"current_steps": 395, "total_steps": 401, "loss": 0.5841, "accuracy": 0.8125, "learning_rate": 4.194035297527765e-10, "epoch": 0.984883902134954, "percentage": 98.5, "elapsed_time": "1 day, 0:27:34", "remaining_time": "0:22:17"} |
|
{"current_steps": 396, "total_steps": 401, "loss": 0.3076, "accuracy": 0.90625, "learning_rate": 2.912702293959901e-10, "epoch": 0.9873772791023843, "percentage": 98.75, "elapsed_time": "1 day, 0:31:26", "remaining_time": "0:18:34"} |
|
{"current_steps": 397, "total_steps": 401, "loss": 0.4734, "accuracy": 0.84375, "learning_rate": 1.8642225652760746e-10, "epoch": 0.9898706560698145, "percentage": 99.0, "elapsed_time": "1 day, 0:34:33", "remaining_time": "0:14:51"} |
|
{"current_steps": 398, "total_steps": 401, "loss": 0.2066, "accuracy": 0.875, "learning_rate": 1.0486659244136054e-10, "epoch": 0.9923640330372449, "percentage": 99.25, "elapsed_time": "1 day, 0:38:00", "remaining_time": "0:11:08"} |
|
{"current_steps": 399, "total_steps": 401, "loss": 0.3252, "accuracy": 0.875, "learning_rate": 4.6608667514608234e-11, "epoch": 0.9948574100046751, "percentage": 99.5, "elapsed_time": "1 day, 0:41:12", "remaining_time": "0:07:25"} |
|
{"current_steps": 400, "total_steps": 401, "loss": 0.3247, "accuracy": 0.84375, "learning_rate": 1.1652360846531317e-11, "epoch": 0.9973507869721053, "percentage": 99.75, "elapsed_time": "1 day, 0:44:33", "remaining_time": "0:03:42"} |
|
{"current_steps": 401, "total_steps": 401, "loss": 0.3852, "accuracy": 0.875, "learning_rate": 0.0, "epoch": 0.9998441639395356, "percentage": 100.0, "elapsed_time": "1 day, 0:47:18", "remaining_time": "0:00:00"} |
|
{"current_steps": 401, "total_steps": 401, "epoch": 0.9998441639395356, "percentage": 100.0, "elapsed_time": "1 day, 0:47:27", "remaining_time": "0:00:00"} |
|
|