dev-v2-20240827022505
Browse files- README.md +57 -16
- config.json +1077 -20
- features_ms_deberta_v3.json +0 -0
- finetune.py +19 -19
- logs/events.out.tfevents.1724725103.modal.2.0 +3 -0
- logs/events.out.tfevents.1724725505.modal.2.1 +3 -0
- model.safetensors +2 -2
- special_tokens_map.json +42 -6
- spm.model +2 -2
- tokenizer.json +0 -0
- tokenizer_config.json +8 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
license:
|
4 |
-
base_model:
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
@@ -19,14 +19,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
# ms-deberta-v2-xlarge-mnli-finetuned-pt
|
21 |
|
22 |
-
This model is a fine-tuned version of [
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0
|
26 |
-
- Precision: 0
|
27 |
-
- Recall: 0
|
28 |
-
- F1: 0
|
29 |
-
- Ratio: 0.
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -46,23 +46,64 @@ More information needed
|
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
- learning_rate: 2e-05
|
49 |
-
- train_batch_size:
|
50 |
-
- eval_batch_size:
|
51 |
- seed: 42
|
52 |
- gradient_accumulation_steps: 2
|
53 |
-
- total_train_batch_size:
|
54 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
- lr_scheduler_warmup_ratio: 0.06
|
57 |
- lr_scheduler_warmup_steps: 4
|
58 |
-
- num_epochs:
|
59 |
- label_smoothing_factor: 0.1
|
60 |
|
61 |
### Training results
|
62 |
|
63 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: tasksource/deberta-small-long-nli
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
|
|
19 |
|
20 |
# ms-deberta-v2-xlarge-mnli-finetuned-pt
|
21 |
|
22 |
+
This model is a fine-tuned version of [tasksource/deberta-small-long-nli](https://huggingface.co/tasksource/deberta-small-long-nli) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.2954
|
25 |
+
- Accuracy: 1.0
|
26 |
+
- Precision: 1.0
|
27 |
+
- Recall: 1.0
|
28 |
+
- F1: 1.0
|
29 |
+
- Ratio: 0.11
|
30 |
|
31 |
## Model description
|
32 |
|
|
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 16
|
50 |
+
- eval_batch_size: 16
|
51 |
- seed: 42
|
52 |
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 32
|
54 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
- lr_scheduler_warmup_ratio: 0.06
|
57 |
- lr_scheduler_warmup_steps: 4
|
58 |
+
- num_epochs: 1
|
59 |
- label_smoothing_factor: 0.1
|
60 |
|
61 |
### Training results
|
62 |
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
|
64 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
65 |
+
| 1.4129 | 0.0237 | 10 | 0.5425 | 0.89 | 0.445 | 0.5 | 0.4709 | 0.0 |
|
66 |
+
| 0.5102 | 0.0474 | 20 | 0.4968 | 0.89 | 0.445 | 0.5 | 0.4709 | 0.0 |
|
67 |
+
| 0.4597 | 0.0711 | 30 | 0.4763 | 0.88 | 0.6225 | 0.5395 | 0.5471 | 0.0327 |
|
68 |
+
| 0.4975 | 0.0948 | 40 | 0.4605 | 0.87 | 0.6658 | 0.6614 | 0.6636 | 0.1067 |
|
69 |
+
| 0.4639 | 0.1185 | 50 | 0.4434 | 0.8947 | 0.7355 | 0.5850 | 0.6125 | 0.0367 |
|
70 |
+
| 0.4687 | 0.1422 | 60 | 0.4557 | 0.892 | 0.7177 | 0.6498 | 0.6747 | 0.0727 |
|
71 |
+
| 0.4489 | 0.1659 | 70 | 0.4353 | 0.9293 | 0.8174 | 0.8275 | 0.8224 | 0.114 |
|
72 |
+
| 0.4318 | 0.1896 | 80 | 0.4269 | 0.924 | 0.8010 | 0.8325 | 0.8156 | 0.1233 |
|
73 |
+
| 0.4723 | 0.2133 | 90 | 0.4202 | 0.9173 | 0.7832 | 0.8580 | 0.8140 | 0.1447 |
|
74 |
+
| 0.4052 | 0.2370 | 100 | 0.4016 | 0.9307 | 0.8207 | 0.8309 | 0.8257 | 0.114 |
|
75 |
+
| 0.4284 | 0.2607 | 110 | 0.4115 | 0.9187 | 0.7855 | 0.8906 | 0.8255 | 0.1593 |
|
76 |
+
| 0.3635 | 0.2844 | 120 | 0.3963 | 0.94 | 0.8308 | 0.9052 | 0.8625 | 0.1393 |
|
77 |
+
| 0.3894 | 0.3081 | 130 | 0.3910 | 0.944 | 0.8409 | 0.9075 | 0.8699 | 0.1353 |
|
78 |
+
| 0.3537 | 0.3318 | 140 | 0.3598 | 0.9693 | 0.8983 | 0.9642 | 0.9277 | 0.1313 |
|
79 |
+
| 0.3776 | 0.3555 | 150 | 0.3868 | 0.944 | 0.8313 | 0.9685 | 0.8823 | 0.166 |
|
80 |
+
| 0.3626 | 0.3791 | 160 | 0.3235 | 0.9887 | 0.9699 | 0.9724 | 0.9711 | 0.1107 |
|
81 |
+
| 0.3683 | 0.4028 | 170 | 0.3272 | 0.99 | 0.9583 | 0.9944 | 0.9754 | 0.12 |
|
82 |
+
| 0.3358 | 0.4265 | 180 | 0.3321 | 0.9873 | 0.9484 | 0.9929 | 0.9692 | 0.1227 |
|
83 |
+
| 0.3435 | 0.4502 | 190 | 0.3370 | 0.982 | 0.9297 | 0.9899 | 0.9571 | 0.128 |
|
84 |
+
| 0.3613 | 0.4739 | 200 | 0.3136 | 0.9893 | 0.9728 | 0.9728 | 0.9728 | 0.11 |
|
85 |
+
| 0.3323 | 0.4976 | 210 | 0.3193 | 0.9887 | 0.9533 | 0.9936 | 0.9723 | 0.1213 |
|
86 |
+
| 0.3181 | 0.5213 | 220 | 0.3078 | 0.9947 | 0.9970 | 0.9758 | 0.9861 | 0.1047 |
|
87 |
+
| 0.3043 | 0.5450 | 230 | 0.3047 | 0.9947 | 0.9970 | 0.9758 | 0.9861 | 0.1047 |
|
88 |
+
| 0.3139 | 0.5687 | 240 | 0.3101 | 0.996 | 0.9825 | 0.9978 | 0.9899 | 0.114 |
|
89 |
+
| 0.3247 | 0.5924 | 250 | 0.3048 | 0.9947 | 0.9970 | 0.9758 | 0.9861 | 0.1047 |
|
90 |
+
| 0.3217 | 0.6161 | 260 | 0.3126 | 0.9913 | 0.9635 | 0.9951 | 0.9786 | 0.1187 |
|
91 |
+
| 0.3071 | 0.6398 | 270 | 0.3021 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
92 |
+
| 0.3048 | 0.6635 | 280 | 0.3048 | 0.9973 | 0.9882 | 0.9985 | 0.9933 | 0.1127 |
|
93 |
+
| 0.3054 | 0.6872 | 290 | 0.2996 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
94 |
+
| 0.3182 | 0.7109 | 300 | 0.2979 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
95 |
+
| 0.3059 | 0.7346 | 310 | 0.3103 | 0.9927 | 0.9688 | 0.9959 | 0.9818 | 0.1173 |
|
96 |
+
| 0.3044 | 0.7583 | 320 | 0.2991 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
97 |
+
| 0.3002 | 0.7820 | 330 | 0.2967 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
98 |
+
| 0.2957 | 0.8057 | 340 | 0.2967 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
99 |
+
| 0.2971 | 0.8294 | 350 | 0.2968 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
100 |
+
| 0.2964 | 0.8531 | 360 | 0.2970 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
101 |
+
| 0.297 | 0.8768 | 370 | 0.2969 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
102 |
+
| 0.3039 | 0.9005 | 380 | 0.2968 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
103 |
+
| 0.3002 | 0.9242 | 390 | 0.2960 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
104 |
+
| 0.2968 | 0.9479 | 400 | 0.2956 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
105 |
+
| 0.2956 | 0.9716 | 410 | 0.2955 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
106 |
+
| 0.2959 | 0.9953 | 420 | 0.2954 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
|
107 |
|
108 |
|
109 |
### Framework versions
|
config.json
CHANGED
@@ -1,42 +1,567 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"DebertaV2ForSequenceClassification"
|
5 |
],
|
6 |
-
"attention_head_size": 64,
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
-
"
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"hidden_act": "gelu",
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
-
"hidden_size":
|
13 |
"id2label": {
|
14 |
-
"0": "
|
15 |
-
"1": "
|
16 |
-
"2": "
|
17 |
},
|
18 |
"initializer_range": 0.02,
|
19 |
-
"intermediate_size":
|
20 |
"label2id": {
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
},
|
25 |
"layer_norm_eps": 1e-07,
|
26 |
-
"max_position_embeddings":
|
27 |
"max_relative_positions": -1,
|
28 |
"model_type": "deberta-v2",
|
29 |
"norm_rel_ebd": "layer_norm",
|
30 |
-
"num_attention_heads":
|
31 |
-
"num_hidden_layers":
|
32 |
"pad_token_id": 0,
|
33 |
"pooler_dropout": 0,
|
34 |
"pooler_hidden_act": "gelu",
|
35 |
-
"pooler_hidden_size":
|
36 |
-
"pooling": {
|
37 |
-
"dropout": 0,
|
38 |
-
"hidden_act": "gelu"
|
39 |
-
},
|
40 |
"pos_att_type": [
|
41 |
"p2c",
|
42 |
"c2p"
|
@@ -45,6 +570,538 @@
|
|
45 |
"position_buckets": 256,
|
46 |
"relative_attention": true,
|
47 |
"share_att_key": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
"torch_dtype": "float32",
|
49 |
"transformers_version": "4.44.2",
|
50 |
"type_vocab_size": 0,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "tasksource/deberta-small-long-nli",
|
3 |
"architectures": [
|
4 |
"DebertaV2ForSequenceClassification"
|
5 |
],
|
|
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifiers_size": [
|
8 |
+
3,
|
9 |
+
2,
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2,
|
14 |
+
1,
|
15 |
+
2,
|
16 |
+
3,
|
17 |
+
2,
|
18 |
+
2,
|
19 |
+
2,
|
20 |
+
3,
|
21 |
+
3,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
1,
|
25 |
+
3,
|
26 |
+
3,
|
27 |
+
2,
|
28 |
+
2,
|
29 |
+
3,
|
30 |
+
2,
|
31 |
+
6,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
3,
|
42 |
+
3,
|
43 |
+
3,
|
44 |
+
3,
|
45 |
+
3,
|
46 |
+
3,
|
47 |
+
3,
|
48 |
+
2,
|
49 |
+
2,
|
50 |
+
2,
|
51 |
+
2,
|
52 |
+
5,
|
53 |
+
3,
|
54 |
+
3,
|
55 |
+
3,
|
56 |
+
3,
|
57 |
+
3,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
3,
|
65 |
+
3,
|
66 |
+
3,
|
67 |
+
3,
|
68 |
+
3,
|
69 |
+
3,
|
70 |
+
3,
|
71 |
+
2,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2,
|
75 |
+
1,
|
76 |
+
1,
|
77 |
+
1,
|
78 |
+
1,
|
79 |
+
1,
|
80 |
+
1,
|
81 |
+
1,
|
82 |
+
1,
|
83 |
+
1,
|
84 |
+
1,
|
85 |
+
1,
|
86 |
+
1,
|
87 |
+
1,
|
88 |
+
1,
|
89 |
+
1,
|
90 |
+
1,
|
91 |
+
1,
|
92 |
+
1,
|
93 |
+
1,
|
94 |
+
1,
|
95 |
+
1,
|
96 |
+
1,
|
97 |
+
1,
|
98 |
+
1,
|
99 |
+
1,
|
100 |
+
1,
|
101 |
+
1,
|
102 |
+
1,
|
103 |
+
1,
|
104 |
+
1,
|
105 |
+
1,
|
106 |
+
1,
|
107 |
+
1,
|
108 |
+
1,
|
109 |
+
1,
|
110 |
+
1,
|
111 |
+
1,
|
112 |
+
1,
|
113 |
+
1,
|
114 |
+
1,
|
115 |
+
1,
|
116 |
+
1,
|
117 |
+
1,
|
118 |
+
1,
|
119 |
+
1,
|
120 |
+
1,
|
121 |
+
1,
|
122 |
+
1,
|
123 |
+
1,
|
124 |
+
1,
|
125 |
+
1,
|
126 |
+
1,
|
127 |
+
1,
|
128 |
+
1,
|
129 |
+
1,
|
130 |
+
1,
|
131 |
+
1,
|
132 |
+
1,
|
133 |
+
1,
|
134 |
+
1,
|
135 |
+
1,
|
136 |
+
1,
|
137 |
+
1,
|
138 |
+
1,
|
139 |
+
1,
|
140 |
+
1,
|
141 |
+
1,
|
142 |
+
1,
|
143 |
+
1,
|
144 |
+
1,
|
145 |
+
1,
|
146 |
+
1,
|
147 |
+
1,
|
148 |
+
1,
|
149 |
+
1,
|
150 |
+
1,
|
151 |
+
1,
|
152 |
+
1,
|
153 |
+
1,
|
154 |
+
1,
|
155 |
+
1,
|
156 |
+
1,
|
157 |
+
1,
|
158 |
+
1,
|
159 |
+
1,
|
160 |
+
1,
|
161 |
+
1,
|
162 |
+
1,
|
163 |
+
1,
|
164 |
+
1,
|
165 |
+
1,
|
166 |
+
1,
|
167 |
+
1,
|
168 |
+
1,
|
169 |
+
1,
|
170 |
+
1,
|
171 |
+
1,
|
172 |
+
1,
|
173 |
+
1,
|
174 |
+
1,
|
175 |
+
1,
|
176 |
+
1,
|
177 |
+
1,
|
178 |
+
1,
|
179 |
+
1,
|
180 |
+
1,
|
181 |
+
1,
|
182 |
+
1,
|
183 |
+
1,
|
184 |
+
1,
|
185 |
+
1,
|
186 |
+
1,
|
187 |
+
1,
|
188 |
+
1,
|
189 |
+
1,
|
190 |
+
1,
|
191 |
+
1,
|
192 |
+
1,
|
193 |
+
1,
|
194 |
+
1,
|
195 |
+
1,
|
196 |
+
1,
|
197 |
+
1,
|
198 |
+
1,
|
199 |
+
1,
|
200 |
+
1,
|
201 |
+
1,
|
202 |
+
1,
|
203 |
+
2,
|
204 |
+
2,
|
205 |
+
2,
|
206 |
+
2,
|
207 |
+
2,
|
208 |
+
2,
|
209 |
+
20,
|
210 |
+
50,
|
211 |
+
3,
|
212 |
+
3,
|
213 |
+
4,
|
214 |
+
2,
|
215 |
+
8,
|
216 |
+
2,
|
217 |
+
3,
|
218 |
+
2,
|
219 |
+
2,
|
220 |
+
4,
|
221 |
+
20,
|
222 |
+
3,
|
223 |
+
3,
|
224 |
+
3,
|
225 |
+
3,
|
226 |
+
3,
|
227 |
+
174,
|
228 |
+
2,
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2,
|
232 |
+
41,
|
233 |
+
3,
|
234 |
+
51,
|
235 |
+
2,
|
236 |
+
2,
|
237 |
+
2,
|
238 |
+
2,
|
239 |
+
16,
|
240 |
+
17,
|
241 |
+
18,
|
242 |
+
2,
|
243 |
+
2,
|
244 |
+
2,
|
245 |
+
3,
|
246 |
+
8,
|
247 |
+
3,
|
248 |
+
7,
|
249 |
+
7,
|
250 |
+
11,
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
42,
|
254 |
+
12,
|
255 |
+
4,
|
256 |
+
100,
|
257 |
+
13,
|
258 |
+
100,
|
259 |
+
8,
|
260 |
+
1,
|
261 |
+
20,
|
262 |
+
2,
|
263 |
+
2,
|
264 |
+
4,
|
265 |
+
5,
|
266 |
+
3,
|
267 |
+
4,
|
268 |
+
14,
|
269 |
+
2,
|
270 |
+
6,
|
271 |
+
4,
|
272 |
+
2,
|
273 |
+
1,
|
274 |
+
3,
|
275 |
+
10,
|
276 |
+
3,
|
277 |
+
10,
|
278 |
+
4,
|
279 |
+
2,
|
280 |
+
7,
|
281 |
+
6,
|
282 |
+
28,
|
283 |
+
3,
|
284 |
+
6,
|
285 |
+
5,
|
286 |
+
7,
|
287 |
+
4,
|
288 |
+
6,
|
289 |
+
3,
|
290 |
+
2,
|
291 |
+
2,
|
292 |
+
2,
|
293 |
+
6,
|
294 |
+
2,
|
295 |
+
7,
|
296 |
+
20,
|
297 |
+
2,
|
298 |
+
2,
|
299 |
+
4,
|
300 |
+
2,
|
301 |
+
9,
|
302 |
+
13,
|
303 |
+
4,
|
304 |
+
2,
|
305 |
+
3,
|
306 |
+
2,
|
307 |
+
3,
|
308 |
+
2,
|
309 |
+
2,
|
310 |
+
2,
|
311 |
+
2,
|
312 |
+
4,
|
313 |
+
1,
|
314 |
+
2,
|
315 |
+
1,
|
316 |
+
2,
|
317 |
+
49,
|
318 |
+
40,
|
319 |
+
10,
|
320 |
+
4,
|
321 |
+
1,
|
322 |
+
2,
|
323 |
+
2,
|
324 |
+
1,
|
325 |
+
5,
|
326 |
+
2,
|
327 |
+
3,
|
328 |
+
2,
|
329 |
+
2,
|
330 |
+
12,
|
331 |
+
3,
|
332 |
+
3,
|
333 |
+
2,
|
334 |
+
19,
|
335 |
+
3,
|
336 |
+
1,
|
337 |
+
2,
|
338 |
+
2,
|
339 |
+
2,
|
340 |
+
2,
|
341 |
+
2,
|
342 |
+
1,
|
343 |
+
2,
|
344 |
+
2,
|
345 |
+
1,
|
346 |
+
1,
|
347 |
+
2,
|
348 |
+
3,
|
349 |
+
2,
|
350 |
+
1,
|
351 |
+
4,
|
352 |
+
3,
|
353 |
+
1,
|
354 |
+
1,
|
355 |
+
1,
|
356 |
+
2,
|
357 |
+
3,
|
358 |
+
2,
|
359 |
+
3,
|
360 |
+
1,
|
361 |
+
1,
|
362 |
+
2,
|
363 |
+
1,
|
364 |
+
2,
|
365 |
+
2,
|
366 |
+
2,
|
367 |
+
2,
|
368 |
+
3,
|
369 |
+
2,
|
370 |
+
2,
|
371 |
+
2,
|
372 |
+
1,
|
373 |
+
3,
|
374 |
+
2,
|
375 |
+
2,
|
376 |
+
1,
|
377 |
+
1,
|
378 |
+
1,
|
379 |
+
1,
|
380 |
+
2,
|
381 |
+
1,
|
382 |
+
1,
|
383 |
+
1,
|
384 |
+
1,
|
385 |
+
4,
|
386 |
+
1,
|
387 |
+
1,
|
388 |
+
1,
|
389 |
+
1,
|
390 |
+
3,
|
391 |
+
1,
|
392 |
+
3,
|
393 |
+
1,
|
394 |
+
2,
|
395 |
+
2,
|
396 |
+
1,
|
397 |
+
2,
|
398 |
+
3,
|
399 |
+
3,
|
400 |
+
2,
|
401 |
+
1,
|
402 |
+
3,
|
403 |
+
1,
|
404 |
+
1,
|
405 |
+
3,
|
406 |
+
1,
|
407 |
+
3,
|
408 |
+
2,
|
409 |
+
1,
|
410 |
+
1,
|
411 |
+
1,
|
412 |
+
2,
|
413 |
+
2,
|
414 |
+
1,
|
415 |
+
1,
|
416 |
+
1,
|
417 |
+
1,
|
418 |
+
1,
|
419 |
+
1,
|
420 |
+
1,
|
421 |
+
1,
|
422 |
+
1,
|
423 |
+
1,
|
424 |
+
2,
|
425 |
+
2,
|
426 |
+
2,
|
427 |
+
2,
|
428 |
+
77,
|
429 |
+
3,
|
430 |
+
2,
|
431 |
+
2,
|
432 |
+
1,
|
433 |
+
1,
|
434 |
+
2,
|
435 |
+
3,
|
436 |
+
18,
|
437 |
+
13,
|
438 |
+
2,
|
439 |
+
2,
|
440 |
+
2,
|
441 |
+
2,
|
442 |
+
2,
|
443 |
+
4,
|
444 |
+
2,
|
445 |
+
24,
|
446 |
+
3,
|
447 |
+
2,
|
448 |
+
2,
|
449 |
+
1,
|
450 |
+
2,
|
451 |
+
2,
|
452 |
+
3,
|
453 |
+
1,
|
454 |
+
2,
|
455 |
+
3,
|
456 |
+
2,
|
457 |
+
3,
|
458 |
+
3,
|
459 |
+
2,
|
460 |
+
2,
|
461 |
+
4,
|
462 |
+
1,
|
463 |
+
17,
|
464 |
+
3,
|
465 |
+
3,
|
466 |
+
2,
|
467 |
+
3,
|
468 |
+
2,
|
469 |
+
3,
|
470 |
+
3,
|
471 |
+
2,
|
472 |
+
1,
|
473 |
+
1,
|
474 |
+
3,
|
475 |
+
2,
|
476 |
+
9,
|
477 |
+
2,
|
478 |
+
1,
|
479 |
+
1,
|
480 |
+
1,
|
481 |
+
1,
|
482 |
+
1,
|
483 |
+
2,
|
484 |
+
2,
|
485 |
+
3,
|
486 |
+
2,
|
487 |
+
3,
|
488 |
+
4,
|
489 |
+
3,
|
490 |
+
3,
|
491 |
+
2,
|
492 |
+
1,
|
493 |
+
1,
|
494 |
+
2,
|
495 |
+
1,
|
496 |
+
1,
|
497 |
+
6,
|
498 |
+
2,
|
499 |
+
3,
|
500 |
+
3,
|
501 |
+
1,
|
502 |
+
1,
|
503 |
+
2,
|
504 |
+
2,
|
505 |
+
10,
|
506 |
+
2,
|
507 |
+
2,
|
508 |
+
2,
|
509 |
+
5,
|
510 |
+
5,
|
511 |
+
5,
|
512 |
+
5,
|
513 |
+
5,
|
514 |
+
5,
|
515 |
+
5,
|
516 |
+
5,
|
517 |
+
5,
|
518 |
+
5,
|
519 |
+
4,
|
520 |
+
1,
|
521 |
+
7,
|
522 |
+
6,
|
523 |
+
6,
|
524 |
+
6,
|
525 |
+
6,
|
526 |
+
6,
|
527 |
+
6,
|
528 |
+
3,
|
529 |
+
2,
|
530 |
+
1,
|
531 |
+
2,
|
532 |
+
2,
|
533 |
+
2,
|
534 |
+
3,
|
535 |
+
3,
|
536 |
+
3,
|
537 |
+
1
|
538 |
+
],
|
539 |
"hidden_act": "gelu",
|
540 |
"hidden_dropout_prob": 0.1,
|
541 |
+
"hidden_size": 768,
|
542 |
"id2label": {
|
543 |
+
"0": "entailment",
|
544 |
+
"1": "neutral",
|
545 |
+
"2": "contradiction"
|
546 |
},
|
547 |
"initializer_range": 0.02,
|
548 |
+
"intermediate_size": 3072,
|
549 |
"label2id": {
|
550 |
+
"contradiction": 2,
|
551 |
+
"entailment": 0,
|
552 |
+
"neutral": 1
|
553 |
},
|
554 |
"layer_norm_eps": 1e-07,
|
555 |
+
"max_position_embeddings": 1680,
|
556 |
"max_relative_positions": -1,
|
557 |
"model_type": "deberta-v2",
|
558 |
"norm_rel_ebd": "layer_norm",
|
559 |
+
"num_attention_heads": 12,
|
560 |
+
"num_hidden_layers": 6,
|
561 |
"pad_token_id": 0,
|
562 |
"pooler_dropout": 0,
|
563 |
"pooler_hidden_act": "gelu",
|
564 |
+
"pooler_hidden_size": 768,
|
|
|
|
|
|
|
|
|
565 |
"pos_att_type": [
|
566 |
"p2c",
|
567 |
"c2p"
|
|
|
570 |
"position_buckets": 256,
|
571 |
"relative_attention": true,
|
572 |
"share_att_key": true,
|
573 |
+
"tasks": [
|
574 |
+
"glue/mnli",
|
575 |
+
"glue/qnli",
|
576 |
+
"glue/rte",
|
577 |
+
"glue/wnli",
|
578 |
+
"glue/mrpc",
|
579 |
+
"glue/qqp",
|
580 |
+
"glue/stsb",
|
581 |
+
"super_glue/boolq",
|
582 |
+
"super_glue/cb",
|
583 |
+
"super_glue/multirc",
|
584 |
+
"super_glue/wic",
|
585 |
+
"super_glue/axg",
|
586 |
+
"anli/a1",
|
587 |
+
"anli/a2",
|
588 |
+
"anli/a3",
|
589 |
+
"sick/label",
|
590 |
+
"sick/relatedness",
|
591 |
+
"sick/entailment_AB",
|
592 |
+
"snli",
|
593 |
+
"scitail/snli_format",
|
594 |
+
"hans",
|
595 |
+
"WANLI",
|
596 |
+
"recast/recast_ner",
|
597 |
+
"recast/recast_kg_relations",
|
598 |
+
"recast/recast_puns",
|
599 |
+
"recast/recast_verbcorner",
|
600 |
+
"recast/recast_sentiment",
|
601 |
+
"recast/recast_verbnet",
|
602 |
+
"recast/recast_factuality",
|
603 |
+
"recast/recast_megaveridicality",
|
604 |
+
"probability_words_nli/reasoning_2hop",
|
605 |
+
"probability_words_nli/reasoning_1hop",
|
606 |
+
"probability_words_nli/usnli",
|
607 |
+
"nan-nli",
|
608 |
+
"nli_fever",
|
609 |
+
"breaking_nli",
|
610 |
+
"conj_nli",
|
611 |
+
"fracas",
|
612 |
+
"dialogue_nli",
|
613 |
+
"mpe",
|
614 |
+
"dnc",
|
615 |
+
"recast_white/fnplus",
|
616 |
+
"recast_white/sprl",
|
617 |
+
"recast_white/dpr",
|
618 |
+
"joci",
|
619 |
+
"robust_nli/IS_CS",
|
620 |
+
"robust_nli/LI_LI",
|
621 |
+
"robust_nli/ST_WO",
|
622 |
+
"robust_nli/PI_SP",
|
623 |
+
"robust_nli/PI_CD",
|
624 |
+
"robust_nli/ST_SE",
|
625 |
+
"robust_nli/ST_NE",
|
626 |
+
"robust_nli/ST_LM",
|
627 |
+
"robust_nli_is_sd",
|
628 |
+
"robust_nli_li_ts",
|
629 |
+
"add_one_rte",
|
630 |
+
"imppres/implicature_quantifiers/log",
|
631 |
+
"imppres/implicature_numerals_2_3/log",
|
632 |
+
"imppres/implicature_gradable_adjective/log",
|
633 |
+
"imppres/implicature_connectives/log",
|
634 |
+
"imppres/implicature_modals/log",
|
635 |
+
"imppres/implicature_numerals_10_100/log",
|
636 |
+
"imppres/implicature_gradable_verb/log",
|
637 |
+
"hlgd",
|
638 |
+
"paws/labeled_final",
|
639 |
+
"paws/labeled_swap",
|
640 |
+
"medical_questions_pairs",
|
641 |
+
"model-written-evals",
|
642 |
+
"truthful_qa/multiple_choice",
|
643 |
+
"fig-qa",
|
644 |
+
"bigbench/bbq_lite_json",
|
645 |
+
"bigbench/english_proverbs",
|
646 |
+
"bigbench/figure_of_speech_detection",
|
647 |
+
"bigbench/emoji_movie",
|
648 |
+
"bigbench/date_understanding",
|
649 |
+
"bigbench/metaphor_understanding",
|
650 |
+
"bigbench/logical_fallacy_detection",
|
651 |
+
"bigbench/analogical_similarity",
|
652 |
+
"bigbench/mnist_ascii",
|
653 |
+
"bigbench/elementary_math_qa",
|
654 |
+
"bigbench/snarks",
|
655 |
+
"bigbench/social_support",
|
656 |
+
"bigbench/logical_deduction",
|
657 |
+
"bigbench/emojis_emotion_prediction",
|
658 |
+
"bigbench/sports_understanding",
|
659 |
+
"bigbench/cifar10_classification",
|
660 |
+
"bigbench/tracking_shuffled_objects",
|
661 |
+
"bigbench/physics",
|
662 |
+
"bigbench/mathematical_induction",
|
663 |
+
"bigbench/movie_dialog_same_or_different",
|
664 |
+
"bigbench/goal_step_wikihow",
|
665 |
+
"bigbench/strategyqa",
|
666 |
+
"bigbench/identify_math_theorems",
|
667 |
+
"bigbench/gre_reading_comprehension",
|
668 |
+
"bigbench/novel_concepts",
|
669 |
+
"bigbench/conceptual_combinations",
|
670 |
+
"bigbench/hyperbaton",
|
671 |
+
"bigbench/strange_stories",
|
672 |
+
"bigbench/contextual_parametric_knowledge_conflicts",
|
673 |
+
"bigbench/implicatures",
|
674 |
+
"bigbench/penguins_in_a_table",
|
675 |
+
"bigbench/logical_sequence",
|
676 |
+
"bigbench/simple_ethical_questions",
|
677 |
+
"bigbench/dyck_languages",
|
678 |
+
"bigbench/geometric_shapes",
|
679 |
+
"bigbench/irony_identification",
|
680 |
+
"bigbench/intent_recognition",
|
681 |
+
"bigbench/logical_args",
|
682 |
+
"bigbench/known_unknowns",
|
683 |
+
"bigbench/formal_fallacies_syllogisms_negation",
|
684 |
+
"bigbench/suicide_risk",
|
685 |
+
"bigbench/crash_blossom",
|
686 |
+
"bigbench/logic_grid_puzzle",
|
687 |
+
"bigbench/analytic_entailment",
|
688 |
+
"bigbench/dark_humor_detection",
|
689 |
+
"bigbench/timedial",
|
690 |
+
"bigbench/presuppositions_as_nli",
|
691 |
+
"bigbench/arithmetic",
|
692 |
+
"bigbench/implicit_relations",
|
693 |
+
"bigbench/understanding_fables",
|
694 |
+
"bigbench/salient_translation_error_detection",
|
695 |
+
"bigbench/anachronisms",
|
696 |
+
"bigbench/moral_permissibility",
|
697 |
+
"bigbench/abstract_narrative_understanding",
|
698 |
+
"bigbench/misconceptions",
|
699 |
+
"bigbench/nonsense_words_grammar",
|
700 |
+
"bigbench/code_line_description",
|
701 |
+
"bigbench/sentence_ambiguity",
|
702 |
+
"bigbench/disambiguation_qa",
|
703 |
+
"bigbench/crass_ai",
|
704 |
+
"bigbench/similarities_abstraction",
|
705 |
+
"bigbench/authorship_verification",
|
706 |
+
"bigbench/phrase_relatedness",
|
707 |
+
"bigbench/color",
|
708 |
+
"bigbench/hhh_alignment",
|
709 |
+
"bigbench/metaphor_boolean",
|
710 |
+
"bigbench/fantasy_reasoning",
|
711 |
+
"bigbench/ruin_names",
|
712 |
+
"bigbench/cause_and_effect",
|
713 |
+
"bigbench/temporal_sequences",
|
714 |
+
"bigbench/navigate",
|
715 |
+
"bigbench/symbol_interpretation",
|
716 |
+
"bigbench/key_value_maps",
|
717 |
+
"bigbench/entailed_polarity",
|
718 |
+
"bigbench/riddle_sense",
|
719 |
+
"bigbench/discourse_marker_prediction",
|
720 |
+
"bigbench/reasoning_about_colored_objects",
|
721 |
+
"bigbench/empirical_judgments",
|
722 |
+
"bigbench/fact_checker",
|
723 |
+
"bigbench/movie_recommendation",
|
724 |
+
"bigbench/checkmate_in_one",
|
725 |
+
"bigbench/epistemic_reasoning",
|
726 |
+
"bigbench/vitaminc_fact_verification",
|
727 |
+
"bigbench/general_knowledge",
|
728 |
+
"bigbench/identify_odd_metaphor",
|
729 |
+
"bigbench/physical_intuition",
|
730 |
+
"bigbench/winowhy",
|
731 |
+
"bigbench/cs_algorithms",
|
732 |
+
"bigbench/undo_permutation",
|
733 |
+
"bigbench/evaluating_information_essentiality",
|
734 |
+
"bigbench/unit_interpretation",
|
735 |
+
"bigbench/question_selection",
|
736 |
+
"bigbench/international_phonetic_alphabet_nli",
|
737 |
+
"bigbench/play_dialog_same_or_different",
|
738 |
+
"bigbench/real_or_fake_text",
|
739 |
+
"bigbench/human_organs_senses",
|
740 |
+
"bigbench/hindu_knowledge",
|
741 |
+
"bigbench/social_iqa",
|
742 |
+
"bigbench/odd_one_out",
|
743 |
+
"bigbench/causal_judgment",
|
744 |
+
"cos_e/v1.0",
|
745 |
+
"cosmos_qa",
|
746 |
+
"dream",
|
747 |
+
"openbookqa",
|
748 |
+
"qasc",
|
749 |
+
"quartz",
|
750 |
+
"quail",
|
751 |
+
"head_qa/en",
|
752 |
+
"sciq",
|
753 |
+
"social_i_qa",
|
754 |
+
"wiki_hop/original",
|
755 |
+
"wiqa",
|
756 |
+
"piqa",
|
757 |
+
"hellaswag",
|
758 |
+
"super_glue/copa",
|
759 |
+
"balanced-copa",
|
760 |
+
"e-CARE",
|
761 |
+
"art",
|
762 |
+
"winogrande/winogrande_xl",
|
763 |
+
"codah/codah",
|
764 |
+
"ai2_arc/ARC-Easy/challenge",
|
765 |
+
"ai2_arc/ARC-Challenge/challenge",
|
766 |
+
"definite_pronoun_resolution",
|
767 |
+
"swag/regular",
|
768 |
+
"math_qa",
|
769 |
+
"glue/cola",
|
770 |
+
"glue/sst2",
|
771 |
+
"utilitarianism",
|
772 |
+
"amazon_counterfactual/en",
|
773 |
+
"insincere-questions",
|
774 |
+
"toxic_conversations",
|
775 |
+
"TuringBench",
|
776 |
+
"trec",
|
777 |
+
"vitaminc",
|
778 |
+
"hope_edi/english",
|
779 |
+
"rumoureval_2019/RumourEval2019",
|
780 |
+
"ethos/binary",
|
781 |
+
"ethos/multilabel",
|
782 |
+
"tweet_eval/offensive",
|
783 |
+
"tweet_eval/sentiment",
|
784 |
+
"tweet_eval/irony",
|
785 |
+
"tweet_eval/hate",
|
786 |
+
"tweet_eval/emotion",
|
787 |
+
"tweet_eval/emoji",
|
788 |
+
"tweet_eval/stance_abortion",
|
789 |
+
"tweet_eval/stance_atheism",
|
790 |
+
"tweet_eval/stance_climate",
|
791 |
+
"tweet_eval/stance_feminist",
|
792 |
+
"tweet_eval/stance_hillary",
|
793 |
+
"discovery/discovery",
|
794 |
+
"pragmeval/squinky-formality",
|
795 |
+
"pragmeval/emobank-arousal",
|
796 |
+
"pragmeval/squinky-implicature",
|
797 |
+
"pragmeval/squinky-informativeness",
|
798 |
+
"pragmeval/switchboard",
|
799 |
+
"pragmeval/verifiability",
|
800 |
+
"pragmeval/mrda",
|
801 |
+
"pragmeval/emobank-valence",
|
802 |
+
"pragmeval/emobank-dominance",
|
803 |
+
"pragmeval/persuasiveness-strength",
|
804 |
+
"pragmeval/persuasiveness-relevance",
|
805 |
+
"pragmeval/pdtb",
|
806 |
+
"pragmeval/gum",
|
807 |
+
"pragmeval/stac",
|
808 |
+
"pragmeval/persuasiveness-specificity",
|
809 |
+
"pragmeval/sarcasm",
|
810 |
+
"pragmeval/persuasiveness-eloquence",
|
811 |
+
"pragmeval/emergent",
|
812 |
+
"pragmeval/persuasiveness-premisetype",
|
813 |
+
"pragmeval/persuasiveness-claimtype",
|
814 |
+
"silicone/meld_e",
|
815 |
+
"silicone/dyda_e",
|
816 |
+
"silicone/iemocap",
|
817 |
+
"silicone/sem",
|
818 |
+
"silicone/meld_s",
|
819 |
+
"silicone/oasis",
|
820 |
+
"silicone/maptask",
|
821 |
+
"silicone/dyda_da",
|
822 |
+
"lex_glue/eurlex",
|
823 |
+
"lex_glue/scotus",
|
824 |
+
"lex_glue/ledgar",
|
825 |
+
"lex_glue/unfair_tos",
|
826 |
+
"lex_glue/case_hold",
|
827 |
+
"language-identification",
|
828 |
+
"imdb",
|
829 |
+
"rotten_tomatoes",
|
830 |
+
"ag_news",
|
831 |
+
"yelp_review_full/yelp_review_full",
|
832 |
+
"financial_phrasebank/sentences_allagree",
|
833 |
+
"poem_sentiment",
|
834 |
+
"dbpedia_14/dbpedia_14",
|
835 |
+
"amazon_polarity/amazon_polarity",
|
836 |
+
"app_reviews",
|
837 |
+
"hate_speech18",
|
838 |
+
"sms_spam",
|
839 |
+
"humicroedit/subtask-1",
|
840 |
+
"humicroedit/subtask-2",
|
841 |
+
"snips_built_in_intents",
|
842 |
+
"hate_speech_offensive",
|
843 |
+
"yahoo_answers_topics",
|
844 |
+
"stackoverflow-questions",
|
845 |
+
"hyperpartisan_news",
|
846 |
+
"sciie",
|
847 |
+
"citation_intent",
|
848 |
+
"go_emotions/simplified",
|
849 |
+
"scicite",
|
850 |
+
"liar",
|
851 |
+
"lexical_relation_classification/CogALexV",
|
852 |
+
"lexical_relation_classification/EVALution",
|
853 |
+
"lexical_relation_classification/K&H+N",
|
854 |
+
"lexical_relation_classification/BLESS",
|
855 |
+
"lexical_relation_classification/ROOT09",
|
856 |
+
"linguisticprobing/obj_number",
|
857 |
+
"linguisticprobing/bigram_shift",
|
858 |
+
"linguisticprobing/subj_number",
|
859 |
+
"linguisticprobing/sentence_length",
|
860 |
+
"linguisticprobing/odd_man_out",
|
861 |
+
"linguisticprobing/tree_depth",
|
862 |
+
"linguisticprobing/top_constituents",
|
863 |
+
"linguisticprobing/coordination_inversion",
|
864 |
+
"linguisticprobing/past_present",
|
865 |
+
"crowdflower/sentiment_nuclear_power",
|
866 |
+
"crowdflower/tweet_global_warming",
|
867 |
+
"crowdflower/political-media-message",
|
868 |
+
"crowdflower/text_emotion",
|
869 |
+
"crowdflower/corporate-messaging",
|
870 |
+
"crowdflower/political-media-audience",
|
871 |
+
"crowdflower/airline-sentiment",
|
872 |
+
"crowdflower/political-media-bias",
|
873 |
+
"crowdflower/economic-news",
|
874 |
+
"ethics/commonsense",
|
875 |
+
"ethics/deontology",
|
876 |
+
"ethics/justice",
|
877 |
+
"ethics/virtue",
|
878 |
+
"emo/emo2019",
|
879 |
+
"google_wellformed_query",
|
880 |
+
"tweets_hate_speech_detection",
|
881 |
+
"has_part",
|
882 |
+
"blog_authorship_corpus/gender",
|
883 |
+
"blog_authorship_corpus/age",
|
884 |
+
"blog_authorship_corpus/job",
|
885 |
+
"open_question_type",
|
886 |
+
"health_fact",
|
887 |
+
"commonsense_qa",
|
888 |
+
"mc_taco",
|
889 |
+
"ade_corpus_v2/Ade_corpus_v2_classification",
|
890 |
+
"discosense",
|
891 |
+
"circa",
|
892 |
+
"phrase_similarity",
|
893 |
+
"scientific-exaggeration-detection",
|
894 |
+
"quarel",
|
895 |
+
"fever-evidence-related",
|
896 |
+
"numer_sense",
|
897 |
+
"dynasent/dynabench.dynasent.r1.all/r1",
|
898 |
+
"dynasent/dynabench.dynasent.r2.all/r2",
|
899 |
+
"Sarcasm_News_Headline",
|
900 |
+
"sem_eval_2010_task_8",
|
901 |
+
"auditor_review",
|
902 |
+
"medmcqa",
|
903 |
+
"Dynasent_Disagreement",
|
904 |
+
"Politeness_Disagreement",
|
905 |
+
"SBIC_Disagreement",
|
906 |
+
"SChem_Disagreement",
|
907 |
+
"Dilemmas_Disagreement",
|
908 |
+
"logiqa",
|
909 |
+
"wiki_qa",
|
910 |
+
"cycic_classification",
|
911 |
+
"cycic_multiplechoice",
|
912 |
+
"sts-companion",
|
913 |
+
"commonsense_qa_2.0",
|
914 |
+
"lingnli",
|
915 |
+
"monotonicity-entailment",
|
916 |
+
"arct",
|
917 |
+
"scinli",
|
918 |
+
"naturallogic",
|
919 |
+
"onestop_qa",
|
920 |
+
"moral_stories/full",
|
921 |
+
"prost",
|
922 |
+
"dynahate",
|
923 |
+
"syntactic-augmentation-nli",
|
924 |
+
"autotnli",
|
925 |
+
"CONDAQA",
|
926 |
+
"webgpt_comparisons",
|
927 |
+
"synthetic-instruct-gptj-pairwise",
|
928 |
+
"scruples",
|
929 |
+
"wouldyourather",
|
930 |
+
"defeasible-nli/atomic",
|
931 |
+
"defeasible-nli/snli",
|
932 |
+
"help-nli",
|
933 |
+
"nli-veridicality-transitivity",
|
934 |
+
"lonli",
|
935 |
+
"dadc-limit-nli",
|
936 |
+
"FLUTE",
|
937 |
+
"strategy-qa",
|
938 |
+
"summarize_from_feedback/comparisons",
|
939 |
+
"folio",
|
940 |
+
"tomi-nli",
|
941 |
+
"avicenna",
|
942 |
+
"SHP",
|
943 |
+
"MedQA-USMLE-4-options-hf",
|
944 |
+
"wikimedqa/medwiki",
|
945 |
+
"cicero",
|
946 |
+
"CREAK",
|
947 |
+
"mutual",
|
948 |
+
"NeQA",
|
949 |
+
"quote-repetition",
|
950 |
+
"redefine-math",
|
951 |
+
"puzzte",
|
952 |
+
"implicatures",
|
953 |
+
"race/middle",
|
954 |
+
"race/high",
|
955 |
+
"race-c",
|
956 |
+
"spartqa-yn",
|
957 |
+
"spartqa-mchoice",
|
958 |
+
"temporal-nli",
|
959 |
+
"riddle_sense",
|
960 |
+
"clcd-english",
|
961 |
+
"twentyquestions",
|
962 |
+
"reclor",
|
963 |
+
"counterfactually-augmented-imdb",
|
964 |
+
"counterfactually-augmented-snli",
|
965 |
+
"cnli",
|
966 |
+
"boolq-natural-perturbations",
|
967 |
+
"acceptability-prediction",
|
968 |
+
"equate",
|
969 |
+
"ScienceQA_text_only",
|
970 |
+
"ekar_english",
|
971 |
+
"implicit-hate-stg1",
|
972 |
+
"chaos-mnli-ambiguity",
|
973 |
+
"headline_cause/en_simple",
|
974 |
+
"logiqa-2.0-nli",
|
975 |
+
"oasst2_dense_flat/quality",
|
976 |
+
"oasst2_dense_flat/toxicity",
|
977 |
+
"oasst2_dense_flat/helpfulness",
|
978 |
+
"mindgames",
|
979 |
+
"ambient",
|
980 |
+
"path-naturalness-prediction",
|
981 |
+
"civil_comments/toxicity",
|
982 |
+
"civil_comments/severe_toxicity",
|
983 |
+
"civil_comments/obscene",
|
984 |
+
"civil_comments/threat",
|
985 |
+
"civil_comments/insult",
|
986 |
+
"civil_comments/identity_attack",
|
987 |
+
"civil_comments/sexual_explicit",
|
988 |
+
"cloth",
|
989 |
+
"dgen",
|
990 |
+
"I2D2",
|
991 |
+
"args_me",
|
992 |
+
"Touche23-ValueEval",
|
993 |
+
"starcon",
|
994 |
+
"banking77",
|
995 |
+
"ConTRoL-nli",
|
996 |
+
"tracie",
|
997 |
+
"sherliic",
|
998 |
+
"sen-making/1",
|
999 |
+
"sen-making/2",
|
1000 |
+
"winowhy",
|
1001 |
+
"robustLR",
|
1002 |
+
"v1/gen_train234_test2to10",
|
1003 |
+
"logical-fallacy",
|
1004 |
+
"parade",
|
1005 |
+
"cladder",
|
1006 |
+
"subjectivity",
|
1007 |
+
"MOH",
|
1008 |
+
"VUAC",
|
1009 |
+
"sharc_modified/mod",
|
1010 |
+
"conceptrules_v2",
|
1011 |
+
"disrpt/eng.dep.scidtb.rels",
|
1012 |
+
"zero-shot-label-nli",
|
1013 |
+
"com2sense",
|
1014 |
+
"scone",
|
1015 |
+
"winodict",
|
1016 |
+
"fool-me-twice",
|
1017 |
+
"monli",
|
1018 |
+
"corr2cause",
|
1019 |
+
"lsat_qa/all",
|
1020 |
+
"apt",
|
1021 |
+
"twitter-financial-news-sentiment",
|
1022 |
+
"icl-symbol-tuning-instruct",
|
1023 |
+
"SpaceNLI",
|
1024 |
+
"propsegment/nli",
|
1025 |
+
"HatemojiBuild",
|
1026 |
+
"regset",
|
1027 |
+
"esci",
|
1028 |
+
"chatbot_arena_conversations",
|
1029 |
+
"dnd_style_intents",
|
1030 |
+
"FLD.v2/default",
|
1031 |
+
"FLD.v2/star",
|
1032 |
+
"SDOH-NLI",
|
1033 |
+
"scifact_entailment",
|
1034 |
+
"feasibilityQA",
|
1035 |
+
"simple_pair",
|
1036 |
+
"AdjectiveScaleProbe-nli",
|
1037 |
+
"resnli",
|
1038 |
+
"SpaRTUN",
|
1039 |
+
"ReSQ",
|
1040 |
+
"semantic_fragments_nli",
|
1041 |
+
"dataset_train_nli",
|
1042 |
+
"stepgame",
|
1043 |
+
"nlgraph",
|
1044 |
+
"oasst2_pairwise_rlhf_reward",
|
1045 |
+
"hh-rlhf/helpful-base",
|
1046 |
+
"hh-rlhf/helpful-online",
|
1047 |
+
"hh-rlhf/helpful-rejection-sampled",
|
1048 |
+
"hh-rlhf/harmless-base",
|
1049 |
+
"ruletaker",
|
1050 |
+
"PARARULE-Plus",
|
1051 |
+
"proofwriter",
|
1052 |
+
"logical-entailment",
|
1053 |
+
"nope",
|
1054 |
+
"LogicNLI",
|
1055 |
+
"contract-nli/contractnli_a/seg",
|
1056 |
+
"contract-nli/contractnli_b/full",
|
1057 |
+
"nli4ct_semeval2024",
|
1058 |
+
"lsat-ar",
|
1059 |
+
"lsat-rc",
|
1060 |
+
"biosift-nli",
|
1061 |
+
"brainteasers/WP",
|
1062 |
+
"brainteasers/SP",
|
1063 |
+
"persuasion",
|
1064 |
+
"AmbigNQ-clarifying-question",
|
1065 |
+
"SIGA-nli",
|
1066 |
+
"FOL-nli",
|
1067 |
+
"goal-step-wikihow/order",
|
1068 |
+
"PARADISE",
|
1069 |
+
"doc-nli",
|
1070 |
+
"mctest-nli",
|
1071 |
+
"patent-phrase-similarity",
|
1072 |
+
"natural-language-satisfiability",
|
1073 |
+
"idioms-nli",
|
1074 |
+
"lifecycle-entailment",
|
1075 |
+
"HelpSteer/helpfulness",
|
1076 |
+
"HelpSteer/correctness",
|
1077 |
+
"HelpSteer/coherence",
|
1078 |
+
"HelpSteer/complexity",
|
1079 |
+
"HelpSteer/verbosity",
|
1080 |
+
"HelpSteer2/helpfulness",
|
1081 |
+
"HelpSteer2/correctness",
|
1082 |
+
"HelpSteer2/coherence",
|
1083 |
+
"HelpSteer2/complexity",
|
1084 |
+
"HelpSteer2/verbosity",
|
1085 |
+
"MSciNLI",
|
1086 |
+
"UltraFeedback-paired",
|
1087 |
+
"AES2-essay-scoring",
|
1088 |
+
"english-grading/cohesion",
|
1089 |
+
"english-grading/syntax",
|
1090 |
+
"english-grading/vocabulary",
|
1091 |
+
"english-grading/phraseology",
|
1092 |
+
"english-grading/grammar",
|
1093 |
+
"english-grading/conventions",
|
1094 |
+
"wice",
|
1095 |
+
"hover",
|
1096 |
+
"tasksource_dpo_pairs",
|
1097 |
+
"seahorse_summarization_evaluation",
|
1098 |
+
"missing-item-prediction/contrastive",
|
1099 |
+
"babi_nli",
|
1100 |
+
"gen_debiased_nli",
|
1101 |
+
"imppres/presupposition",
|
1102 |
+
"/prag",
|
1103 |
+
"blimp-2"
|
1104 |
+
],
|
1105 |
"torch_dtype": "float32",
|
1106 |
"transformers_version": "4.44.2",
|
1107 |
"type_vocab_size": 0,
|
features_ms_deberta_v3.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
finetune.py
CHANGED
@@ -58,7 +58,7 @@ def gpu_function():
|
|
58 |
|
59 |
|
60 |
|
61 |
-
GPU_CONFIG = modal.gpu.A100(count=
|
62 |
|
63 |
@app.function(
|
64 |
gpu=GPU_CONFIG, # self.params.gpu,
|
@@ -77,8 +77,12 @@ def run_finetune(data):
|
|
77 |
print("CUDA device count:", torch.cuda.device_count())
|
78 |
|
79 |
import pandas as pd
|
80 |
-
open('./
|
81 |
-
df = pd.read_json('./
|
|
|
|
|
|
|
|
|
82 |
|
83 |
from datasets import Dataset
|
84 |
from transformers import (
|
@@ -87,6 +91,7 @@ def run_finetune(data):
|
|
87 |
|
88 |
Trainer, TrainingArguments ,EvalPrediction,DataCollatorWithPadding
|
89 |
)
|
|
|
90 |
import numpy as np
|
91 |
from itertools import chain
|
92 |
import re
|
@@ -114,7 +119,7 @@ def run_finetune(data):
|
|
114 |
model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
|
115 |
# model_name = "MoritzLaurer/bge-m3-zeroshot-v2.0"
|
116 |
# model_name = "cross-encoder/nli-deberta-v3-base"
|
117 |
-
model_name = "
|
118 |
|
119 |
# Define the directory where the output/results will be saved
|
120 |
output_dir = "./"
|
@@ -167,7 +172,7 @@ def run_finetune(data):
|
|
167 |
# In[7]:
|
168 |
|
169 |
|
170 |
-
train_data, test_data = train_test_split(df, test_size=0.
|
171 |
|
172 |
# Shuffle the train_data DataFrame and create a new DataFrame with shuffled rows
|
173 |
train_shuffle_df = train_data
|
@@ -225,9 +230,9 @@ def run_finetune(data):
|
|
225 |
training_args = TrainingArguments(
|
226 |
output_dir=output_dir, # Output directory
|
227 |
logging_dir=output_dir + "/logs",# Output directory for logging
|
228 |
-
num_train_epochs=
|
229 |
-
per_device_train_batch_size=
|
230 |
-
per_device_eval_batch_size=
|
231 |
warmup_steps=4, # Number of warmup steps for learning rate scheduler
|
232 |
weight_decay=0.01, # Strength of weight decay
|
233 |
gradient_accumulation_steps=2, # The number of steps whose gradients are accumulated
|
@@ -241,10 +246,13 @@ def run_finetune(data):
|
|
241 |
logging_first_step=True,
|
242 |
do_eval=True,
|
243 |
hub_model_id="rafaelsandroni/ms-deberta-v2-xlarge-mnli-finetuned-pt",
|
|
|
244 |
)
|
245 |
|
246 |
|
247 |
# In[15]:
|
|
|
|
|
248 |
|
249 |
|
250 |
trainer = Trainer(
|
@@ -253,7 +261,8 @@ def run_finetune(data):
|
|
253 |
train_dataset=train_dataset, # Training dataset
|
254 |
eval_dataset=test_dataset, # Evaluation dataset
|
255 |
tokenizer=tokenizer,
|
256 |
-
compute_metrics=compute_metrics
|
|
|
257 |
)
|
258 |
|
259 |
|
@@ -275,15 +284,6 @@ def run_finetune(data):
|
|
275 |
v = 2
|
276 |
commit = f"dev-v{v}-{t}"
|
277 |
trainer.push_to_hub(commit, token=token)
|
278 |
-
# predict
|
279 |
-
for i, row in test_shuffle_df.iterrows():
|
280 |
-
pred_model = trainer.model([row["premise"], row["hypothesis"]])
|
281 |
-
print(pred_model, row["class"])
|
282 |
-
# In[ ]:
|
283 |
-
|
284 |
-
|
285 |
-
model.eval()
|
286 |
-
|
287 |
|
288 |
|
289 |
|
@@ -294,7 +294,7 @@ def run():
|
|
294 |
import pandas as pd
|
295 |
t0 = time.time()
|
296 |
#df = pd.read_json('./features_ms_deberta_v2.json', lines=False)
|
297 |
-
with open('./
|
298 |
data = f.read()
|
299 |
run_finetune.remote(data)
|
300 |
|
|
|
58 |
|
59 |
|
60 |
|
61 |
+
GPU_CONFIG = modal.gpu.A100(count=1, size="80GB")
|
62 |
|
63 |
@app.function(
|
64 |
gpu=GPU_CONFIG, # self.params.gpu,
|
|
|
77 |
print("CUDA device count:", torch.cuda.device_count())
|
78 |
|
79 |
import pandas as pd
|
80 |
+
open('./features_ms_deberta_v3.json', 'w').write(data)
|
81 |
+
df = pd.read_json('./features_ms_deberta_v3.json', lines=False)
|
82 |
+
dfs = []
|
83 |
+
for _ in range(50):
|
84 |
+
dfs.append(df)
|
85 |
+
df = pd.concat(dfs, ignore_index=True)
|
86 |
|
87 |
from datasets import Dataset
|
88 |
from transformers import (
|
|
|
91 |
|
92 |
Trainer, TrainingArguments ,EvalPrediction,DataCollatorWithPadding
|
93 |
)
|
94 |
+
from transformers import EarlyStoppingCallback
|
95 |
import numpy as np
|
96 |
from itertools import chain
|
97 |
import re
|
|
|
119 |
model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
|
120 |
# model_name = "MoritzLaurer/bge-m3-zeroshot-v2.0"
|
121 |
# model_name = "cross-encoder/nli-deberta-v3-base"
|
122 |
+
model_name = "tasksource/deberta-small-long-nli"
|
123 |
|
124 |
# Define the directory where the output/results will be saved
|
125 |
output_dir = "./"
|
|
|
172 |
# In[7]:
|
173 |
|
174 |
|
175 |
+
train_data, test_data = train_test_split(df, test_size=0.1, random_state=42)
|
176 |
|
177 |
# Shuffle the train_data DataFrame and create a new DataFrame with shuffled rows
|
178 |
train_shuffle_df = train_data
|
|
|
230 |
training_args = TrainingArguments(
|
231 |
output_dir=output_dir, # Output directory
|
232 |
logging_dir=output_dir + "/logs",# Output directory for logging
|
233 |
+
num_train_epochs=1, # Total number of training epochs
|
234 |
+
per_device_train_batch_size=16, # Batch size per device during training
|
235 |
+
per_device_eval_batch_size=16, # Batch size for evaluation
|
236 |
warmup_steps=4, # Number of warmup steps for learning rate scheduler
|
237 |
weight_decay=0.01, # Strength of weight decay
|
238 |
gradient_accumulation_steps=2, # The number of steps whose gradients are accumulated
|
|
|
246 |
logging_first_step=True,
|
247 |
do_eval=True,
|
248 |
hub_model_id="rafaelsandroni/ms-deberta-v2-xlarge-mnli-finetuned-pt",
|
249 |
+
load_best_model_at_end=True,
|
250 |
)
|
251 |
|
252 |
|
253 |
# In[15]:
|
254 |
+
|
255 |
+
callbacks = [EarlyStoppingCallback(early_stopping_patience=3)]
|
256 |
|
257 |
|
258 |
trainer = Trainer(
|
|
|
261 |
train_dataset=train_dataset, # Training dataset
|
262 |
eval_dataset=test_dataset, # Evaluation dataset
|
263 |
tokenizer=tokenizer,
|
264 |
+
compute_metrics=compute_metrics,
|
265 |
+
callbacks=callbacks
|
266 |
)
|
267 |
|
268 |
|
|
|
284 |
v = 2
|
285 |
commit = f"dev-v{v}-{t}"
|
286 |
trainer.push_to_hub(commit, token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
|
289 |
|
|
|
294 |
import pandas as pd
|
295 |
t0 = time.time()
|
296 |
#df = pd.read_json('./features_ms_deberta_v2.json', lines=False)
|
297 |
+
with open('./features_ms_deberta_v3.json') as f:
|
298 |
data = f.read()
|
299 |
run_finetune.remote(data)
|
300 |
|
logs/events.out.tfevents.1724725103.modal.2.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c64adf7268903d8e1a57092586040cdc767d5cbba6e9ec9fa5e474de10deed1
|
3 |
+
size 54531
|
logs/events.out.tfevents.1724725505.modal.2.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d6bc56408583b74aeb274c40e1aa47606b5336d596ef2f968c5e4f9f3998d4a
|
3 |
+
size 609
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6334b199dda92d20aa4e2d1408025de9b46734324097a006e55556eff6ef2943
|
3 |
+
size 567601628
|
special_tokens_map.json
CHANGED
@@ -1,10 +1,46 @@
|
|
1 |
{
|
2 |
-
"bos_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"unk_token": {
|
9 |
"content": "[UNK]",
|
10 |
"lstrip": false,
|
|
|
1 |
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
"unk_token": {
|
45 |
"content": "[UNK]",
|
46 |
"lstrip": false,
|
spm.model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -47,12 +47,19 @@
|
|
47 |
"do_lower_case": false,
|
48 |
"eos_token": "[SEP]",
|
49 |
"mask_token": "[MASK]",
|
50 |
-
"
|
|
|
|
|
51 |
"pad_token": "[PAD]",
|
|
|
|
|
52 |
"sep_token": "[SEP]",
|
53 |
"sp_model_kwargs": {},
|
54 |
"split_by_punct": false,
|
|
|
55 |
"tokenizer_class": "DebertaV2Tokenizer",
|
|
|
|
|
56 |
"unk_token": "[UNK]",
|
57 |
"vocab_type": "spm"
|
58 |
}
|
|
|
47 |
"do_lower_case": false,
|
48 |
"eos_token": "[SEP]",
|
49 |
"mask_token": "[MASK]",
|
50 |
+
"max_length": 1680,
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
"sep_token": "[SEP]",
|
57 |
"sp_model_kwargs": {},
|
58 |
"split_by_punct": false,
|
59 |
+
"stride": 0,
|
60 |
"tokenizer_class": "DebertaV2Tokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
"unk_token": "[UNK]",
|
64 |
"vocab_type": "spm"
|
65 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5176
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8f36e6350dbd0271210951e69cf655fcf20e165b523f134f106da097aeaf403
|
3 |
size 5176
|