rafaelsandroni commited on
Commit
1f30202
·
verified ·
1 Parent(s): dc87fe5

dev-v2-20240827022505

Browse files
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: transformers
3
- license: mit
4
- base_model: microsoft/deberta-v2-xlarge-mnli
5
  tags:
6
  - generated_from_trainer
7
  metrics:
@@ -19,14 +19,14 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # ms-deberta-v2-xlarge-mnli-finetuned-pt
21
 
22
- This model is a fine-tuned version of [microsoft/deberta-v2-xlarge-mnli](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.7274
25
- - Accuracy: 0.8571
26
- - Precision: 0.4286
27
- - Recall: 0.5
28
- - F1: 0.4615
29
- - Ratio: 0.0
30
 
31
  ## Model description
32
 
@@ -46,23 +46,64 @@ More information needed
46
 
47
  The following hyperparameters were used during training:
48
  - learning_rate: 2e-05
49
- - train_batch_size: 4
50
- - eval_batch_size: 4
51
  - seed: 42
52
  - gradient_accumulation_steps: 2
53
- - total_train_batch_size: 8
54
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
  - lr_scheduler_type: linear
56
  - lr_scheduler_warmup_ratio: 0.06
57
  - lr_scheduler_warmup_steps: 4
58
- - num_epochs: 3
59
  - label_smoothing_factor: 0.1
60
 
61
  ### Training results
62
 
63
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
64
- |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----:|
65
- | 0.8996 | 1.5385 | 10 | 0.6120 | 0.8571 | 0.4286 | 0.5 | 0.4615 | 0.0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
  ### Framework versions
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: tasksource/deberta-small-long-nli
5
  tags:
6
  - generated_from_trainer
7
  metrics:
 
19
 
20
  # ms-deberta-v2-xlarge-mnli-finetuned-pt
21
 
22
+ This model is a fine-tuned version of [tasksource/deberta-small-long-nli](https://huggingface.co/tasksource/deberta-small-long-nli) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.2954
25
+ - Accuracy: 1.0
26
+ - Precision: 1.0
27
+ - Recall: 1.0
28
+ - F1: 1.0
29
+ - Ratio: 0.11
30
 
31
  ## Model description
32
 
 
46
 
47
  The following hyperparameters were used during training:
48
  - learning_rate: 2e-05
49
+ - train_batch_size: 16
50
+ - eval_batch_size: 16
51
  - seed: 42
52
  - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 32
54
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
  - lr_scheduler_type: linear
56
  - lr_scheduler_warmup_ratio: 0.06
57
  - lr_scheduler_warmup_steps: 4
58
+ - num_epochs: 1
59
  - label_smoothing_factor: 0.1
60
 
61
  ### Training results
62
 
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
64
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
65
+ | 1.4129 | 0.0237 | 10 | 0.5425 | 0.89 | 0.445 | 0.5 | 0.4709 | 0.0 |
66
+ | 0.5102 | 0.0474 | 20 | 0.4968 | 0.89 | 0.445 | 0.5 | 0.4709 | 0.0 |
67
+ | 0.4597 | 0.0711 | 30 | 0.4763 | 0.88 | 0.6225 | 0.5395 | 0.5471 | 0.0327 |
68
+ | 0.4975 | 0.0948 | 40 | 0.4605 | 0.87 | 0.6658 | 0.6614 | 0.6636 | 0.1067 |
69
+ | 0.4639 | 0.1185 | 50 | 0.4434 | 0.8947 | 0.7355 | 0.5850 | 0.6125 | 0.0367 |
70
+ | 0.4687 | 0.1422 | 60 | 0.4557 | 0.892 | 0.7177 | 0.6498 | 0.6747 | 0.0727 |
71
+ | 0.4489 | 0.1659 | 70 | 0.4353 | 0.9293 | 0.8174 | 0.8275 | 0.8224 | 0.114 |
72
+ | 0.4318 | 0.1896 | 80 | 0.4269 | 0.924 | 0.8010 | 0.8325 | 0.8156 | 0.1233 |
73
+ | 0.4723 | 0.2133 | 90 | 0.4202 | 0.9173 | 0.7832 | 0.8580 | 0.8140 | 0.1447 |
74
+ | 0.4052 | 0.2370 | 100 | 0.4016 | 0.9307 | 0.8207 | 0.8309 | 0.8257 | 0.114 |
75
+ | 0.4284 | 0.2607 | 110 | 0.4115 | 0.9187 | 0.7855 | 0.8906 | 0.8255 | 0.1593 |
76
+ | 0.3635 | 0.2844 | 120 | 0.3963 | 0.94 | 0.8308 | 0.9052 | 0.8625 | 0.1393 |
77
+ | 0.3894 | 0.3081 | 130 | 0.3910 | 0.944 | 0.8409 | 0.9075 | 0.8699 | 0.1353 |
78
+ | 0.3537 | 0.3318 | 140 | 0.3598 | 0.9693 | 0.8983 | 0.9642 | 0.9277 | 0.1313 |
79
+ | 0.3776 | 0.3555 | 150 | 0.3868 | 0.944 | 0.8313 | 0.9685 | 0.8823 | 0.166 |
80
+ | 0.3626 | 0.3791 | 160 | 0.3235 | 0.9887 | 0.9699 | 0.9724 | 0.9711 | 0.1107 |
81
+ | 0.3683 | 0.4028 | 170 | 0.3272 | 0.99 | 0.9583 | 0.9944 | 0.9754 | 0.12 |
82
+ | 0.3358 | 0.4265 | 180 | 0.3321 | 0.9873 | 0.9484 | 0.9929 | 0.9692 | 0.1227 |
83
+ | 0.3435 | 0.4502 | 190 | 0.3370 | 0.982 | 0.9297 | 0.9899 | 0.9571 | 0.128 |
84
+ | 0.3613 | 0.4739 | 200 | 0.3136 | 0.9893 | 0.9728 | 0.9728 | 0.9728 | 0.11 |
85
+ | 0.3323 | 0.4976 | 210 | 0.3193 | 0.9887 | 0.9533 | 0.9936 | 0.9723 | 0.1213 |
86
+ | 0.3181 | 0.5213 | 220 | 0.3078 | 0.9947 | 0.9970 | 0.9758 | 0.9861 | 0.1047 |
87
+ | 0.3043 | 0.5450 | 230 | 0.3047 | 0.9947 | 0.9970 | 0.9758 | 0.9861 | 0.1047 |
88
+ | 0.3139 | 0.5687 | 240 | 0.3101 | 0.996 | 0.9825 | 0.9978 | 0.9899 | 0.114 |
89
+ | 0.3247 | 0.5924 | 250 | 0.3048 | 0.9947 | 0.9970 | 0.9758 | 0.9861 | 0.1047 |
90
+ | 0.3217 | 0.6161 | 260 | 0.3126 | 0.9913 | 0.9635 | 0.9951 | 0.9786 | 0.1187 |
91
+ | 0.3071 | 0.6398 | 270 | 0.3021 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
92
+ | 0.3048 | 0.6635 | 280 | 0.3048 | 0.9973 | 0.9882 | 0.9985 | 0.9933 | 0.1127 |
93
+ | 0.3054 | 0.6872 | 290 | 0.2996 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
94
+ | 0.3182 | 0.7109 | 300 | 0.2979 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
95
+ | 0.3059 | 0.7346 | 310 | 0.3103 | 0.9927 | 0.9688 | 0.9959 | 0.9818 | 0.1173 |
96
+ | 0.3044 | 0.7583 | 320 | 0.2991 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
97
+ | 0.3002 | 0.7820 | 330 | 0.2967 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
98
+ | 0.2957 | 0.8057 | 340 | 0.2967 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
99
+ | 0.2971 | 0.8294 | 350 | 0.2968 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
100
+ | 0.2964 | 0.8531 | 360 | 0.2970 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
101
+ | 0.297 | 0.8768 | 370 | 0.2969 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
102
+ | 0.3039 | 0.9005 | 380 | 0.2968 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
103
+ | 0.3002 | 0.9242 | 390 | 0.2960 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
104
+ | 0.2968 | 0.9479 | 400 | 0.2956 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
105
+ | 0.2956 | 0.9716 | 410 | 0.2955 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
106
+ | 0.2959 | 0.9953 | 420 | 0.2954 | 1.0 | 1.0 | 1.0 | 1.0 | 0.11 |
107
 
108
 
109
  ### Framework versions
config.json CHANGED
@@ -1,42 +1,567 @@
1
  {
2
- "_name_or_path": "microsoft/deberta-v2-xlarge-mnli",
3
  "architectures": [
4
  "DebertaV2ForSequenceClassification"
5
  ],
6
- "attention_head_size": 64,
7
  "attention_probs_dropout_prob": 0.1,
8
- "conv_act": "gelu",
9
- "conv_kernel_size": 3,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
- "hidden_size": 1536,
13
  "id2label": {
14
- "0": "CONTRADICTION",
15
- "1": "NEUTRAL",
16
- "2": "ENTAILMENT"
17
  },
18
  "initializer_range": 0.02,
19
- "intermediate_size": 6144,
20
  "label2id": {
21
- "CONTRADICTION": 0,
22
- "ENTAILMENT": 2,
23
- "NEUTRAL": 1
24
  },
25
  "layer_norm_eps": 1e-07,
26
- "max_position_embeddings": 512,
27
  "max_relative_positions": -1,
28
  "model_type": "deberta-v2",
29
  "norm_rel_ebd": "layer_norm",
30
- "num_attention_heads": 24,
31
- "num_hidden_layers": 24,
32
  "pad_token_id": 0,
33
  "pooler_dropout": 0,
34
  "pooler_hidden_act": "gelu",
35
- "pooler_hidden_size": 1536,
36
- "pooling": {
37
- "dropout": 0,
38
- "hidden_act": "gelu"
39
- },
40
  "pos_att_type": [
41
  "p2c",
42
  "c2p"
@@ -45,6 +570,538 @@
45
  "position_buckets": 256,
46
  "relative_attention": true,
47
  "share_att_key": true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  "torch_dtype": "float32",
49
  "transformers_version": "4.44.2",
50
  "type_vocab_size": 0,
 
1
  {
2
+ "_name_or_path": "tasksource/deberta-small-long-nli",
3
  "architectures": [
4
  "DebertaV2ForSequenceClassification"
5
  ],
 
6
  "attention_probs_dropout_prob": 0.1,
7
+ "classifiers_size": [
8
+ 3,
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2,
14
+ 1,
15
+ 2,
16
+ 3,
17
+ 2,
18
+ 2,
19
+ 2,
20
+ 3,
21
+ 3,
22
+ 3,
23
+ 3,
24
+ 1,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2,
29
+ 3,
30
+ 2,
31
+ 6,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 3,
42
+ 3,
43
+ 3,
44
+ 3,
45
+ 3,
46
+ 3,
47
+ 3,
48
+ 2,
49
+ 2,
50
+ 2,
51
+ 2,
52
+ 5,
53
+ 3,
54
+ 3,
55
+ 3,
56
+ 3,
57
+ 3,
58
+ 3,
59
+ 3,
60
+ 3,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 3,
65
+ 3,
66
+ 3,
67
+ 3,
68
+ 3,
69
+ 3,
70
+ 3,
71
+ 2,
72
+ 2,
73
+ 2,
74
+ 2,
75
+ 1,
76
+ 1,
77
+ 1,
78
+ 1,
79
+ 1,
80
+ 1,
81
+ 1,
82
+ 1,
83
+ 1,
84
+ 1,
85
+ 1,
86
+ 1,
87
+ 1,
88
+ 1,
89
+ 1,
90
+ 1,
91
+ 1,
92
+ 1,
93
+ 1,
94
+ 1,
95
+ 1,
96
+ 1,
97
+ 1,
98
+ 1,
99
+ 1,
100
+ 1,
101
+ 1,
102
+ 1,
103
+ 1,
104
+ 1,
105
+ 1,
106
+ 1,
107
+ 1,
108
+ 1,
109
+ 1,
110
+ 1,
111
+ 1,
112
+ 1,
113
+ 1,
114
+ 1,
115
+ 1,
116
+ 1,
117
+ 1,
118
+ 1,
119
+ 1,
120
+ 1,
121
+ 1,
122
+ 1,
123
+ 1,
124
+ 1,
125
+ 1,
126
+ 1,
127
+ 1,
128
+ 1,
129
+ 1,
130
+ 1,
131
+ 1,
132
+ 1,
133
+ 1,
134
+ 1,
135
+ 1,
136
+ 1,
137
+ 1,
138
+ 1,
139
+ 1,
140
+ 1,
141
+ 1,
142
+ 1,
143
+ 1,
144
+ 1,
145
+ 1,
146
+ 1,
147
+ 1,
148
+ 1,
149
+ 1,
150
+ 1,
151
+ 1,
152
+ 1,
153
+ 1,
154
+ 1,
155
+ 1,
156
+ 1,
157
+ 1,
158
+ 1,
159
+ 1,
160
+ 1,
161
+ 1,
162
+ 1,
163
+ 1,
164
+ 1,
165
+ 1,
166
+ 1,
167
+ 1,
168
+ 1,
169
+ 1,
170
+ 1,
171
+ 1,
172
+ 1,
173
+ 1,
174
+ 1,
175
+ 1,
176
+ 1,
177
+ 1,
178
+ 1,
179
+ 1,
180
+ 1,
181
+ 1,
182
+ 1,
183
+ 1,
184
+ 1,
185
+ 1,
186
+ 1,
187
+ 1,
188
+ 1,
189
+ 1,
190
+ 1,
191
+ 1,
192
+ 1,
193
+ 1,
194
+ 1,
195
+ 1,
196
+ 1,
197
+ 1,
198
+ 1,
199
+ 1,
200
+ 1,
201
+ 1,
202
+ 1,
203
+ 2,
204
+ 2,
205
+ 2,
206
+ 2,
207
+ 2,
208
+ 2,
209
+ 20,
210
+ 50,
211
+ 3,
212
+ 3,
213
+ 4,
214
+ 2,
215
+ 8,
216
+ 2,
217
+ 3,
218
+ 2,
219
+ 2,
220
+ 4,
221
+ 20,
222
+ 3,
223
+ 3,
224
+ 3,
225
+ 3,
226
+ 3,
227
+ 174,
228
+ 2,
229
+ 2,
230
+ 2,
231
+ 2,
232
+ 41,
233
+ 3,
234
+ 51,
235
+ 2,
236
+ 2,
237
+ 2,
238
+ 2,
239
+ 16,
240
+ 17,
241
+ 18,
242
+ 2,
243
+ 2,
244
+ 2,
245
+ 3,
246
+ 8,
247
+ 3,
248
+ 7,
249
+ 7,
250
+ 11,
251
+ 3,
252
+ 3,
253
+ 42,
254
+ 12,
255
+ 4,
256
+ 100,
257
+ 13,
258
+ 100,
259
+ 8,
260
+ 1,
261
+ 20,
262
+ 2,
263
+ 2,
264
+ 4,
265
+ 5,
266
+ 3,
267
+ 4,
268
+ 14,
269
+ 2,
270
+ 6,
271
+ 4,
272
+ 2,
273
+ 1,
274
+ 3,
275
+ 10,
276
+ 3,
277
+ 10,
278
+ 4,
279
+ 2,
280
+ 7,
281
+ 6,
282
+ 28,
283
+ 3,
284
+ 6,
285
+ 5,
286
+ 7,
287
+ 4,
288
+ 6,
289
+ 3,
290
+ 2,
291
+ 2,
292
+ 2,
293
+ 6,
294
+ 2,
295
+ 7,
296
+ 20,
297
+ 2,
298
+ 2,
299
+ 4,
300
+ 2,
301
+ 9,
302
+ 13,
303
+ 4,
304
+ 2,
305
+ 3,
306
+ 2,
307
+ 3,
308
+ 2,
309
+ 2,
310
+ 2,
311
+ 2,
312
+ 4,
313
+ 1,
314
+ 2,
315
+ 1,
316
+ 2,
317
+ 49,
318
+ 40,
319
+ 10,
320
+ 4,
321
+ 1,
322
+ 2,
323
+ 2,
324
+ 1,
325
+ 5,
326
+ 2,
327
+ 3,
328
+ 2,
329
+ 2,
330
+ 12,
331
+ 3,
332
+ 3,
333
+ 2,
334
+ 19,
335
+ 3,
336
+ 1,
337
+ 2,
338
+ 2,
339
+ 2,
340
+ 2,
341
+ 2,
342
+ 1,
343
+ 2,
344
+ 2,
345
+ 1,
346
+ 1,
347
+ 2,
348
+ 3,
349
+ 2,
350
+ 1,
351
+ 4,
352
+ 3,
353
+ 1,
354
+ 1,
355
+ 1,
356
+ 2,
357
+ 3,
358
+ 2,
359
+ 3,
360
+ 1,
361
+ 1,
362
+ 2,
363
+ 1,
364
+ 2,
365
+ 2,
366
+ 2,
367
+ 2,
368
+ 3,
369
+ 2,
370
+ 2,
371
+ 2,
372
+ 1,
373
+ 3,
374
+ 2,
375
+ 2,
376
+ 1,
377
+ 1,
378
+ 1,
379
+ 1,
380
+ 2,
381
+ 1,
382
+ 1,
383
+ 1,
384
+ 1,
385
+ 4,
386
+ 1,
387
+ 1,
388
+ 1,
389
+ 1,
390
+ 3,
391
+ 1,
392
+ 3,
393
+ 1,
394
+ 2,
395
+ 2,
396
+ 1,
397
+ 2,
398
+ 3,
399
+ 3,
400
+ 2,
401
+ 1,
402
+ 3,
403
+ 1,
404
+ 1,
405
+ 3,
406
+ 1,
407
+ 3,
408
+ 2,
409
+ 1,
410
+ 1,
411
+ 1,
412
+ 2,
413
+ 2,
414
+ 1,
415
+ 1,
416
+ 1,
417
+ 1,
418
+ 1,
419
+ 1,
420
+ 1,
421
+ 1,
422
+ 1,
423
+ 1,
424
+ 2,
425
+ 2,
426
+ 2,
427
+ 2,
428
+ 77,
429
+ 3,
430
+ 2,
431
+ 2,
432
+ 1,
433
+ 1,
434
+ 2,
435
+ 3,
436
+ 18,
437
+ 13,
438
+ 2,
439
+ 2,
440
+ 2,
441
+ 2,
442
+ 2,
443
+ 4,
444
+ 2,
445
+ 24,
446
+ 3,
447
+ 2,
448
+ 2,
449
+ 1,
450
+ 2,
451
+ 2,
452
+ 3,
453
+ 1,
454
+ 2,
455
+ 3,
456
+ 2,
457
+ 3,
458
+ 3,
459
+ 2,
460
+ 2,
461
+ 4,
462
+ 1,
463
+ 17,
464
+ 3,
465
+ 3,
466
+ 2,
467
+ 3,
468
+ 2,
469
+ 3,
470
+ 3,
471
+ 2,
472
+ 1,
473
+ 1,
474
+ 3,
475
+ 2,
476
+ 9,
477
+ 2,
478
+ 1,
479
+ 1,
480
+ 1,
481
+ 1,
482
+ 1,
483
+ 2,
484
+ 2,
485
+ 3,
486
+ 2,
487
+ 3,
488
+ 4,
489
+ 3,
490
+ 3,
491
+ 2,
492
+ 1,
493
+ 1,
494
+ 2,
495
+ 1,
496
+ 1,
497
+ 6,
498
+ 2,
499
+ 3,
500
+ 3,
501
+ 1,
502
+ 1,
503
+ 2,
504
+ 2,
505
+ 10,
506
+ 2,
507
+ 2,
508
+ 2,
509
+ 5,
510
+ 5,
511
+ 5,
512
+ 5,
513
+ 5,
514
+ 5,
515
+ 5,
516
+ 5,
517
+ 5,
518
+ 5,
519
+ 4,
520
+ 1,
521
+ 7,
522
+ 6,
523
+ 6,
524
+ 6,
525
+ 6,
526
+ 6,
527
+ 6,
528
+ 3,
529
+ 2,
530
+ 1,
531
+ 2,
532
+ 2,
533
+ 2,
534
+ 3,
535
+ 3,
536
+ 3,
537
+ 1
538
+ ],
539
  "hidden_act": "gelu",
540
  "hidden_dropout_prob": 0.1,
541
+ "hidden_size": 768,
542
  "id2label": {
543
+ "0": "entailment",
544
+ "1": "neutral",
545
+ "2": "contradiction"
546
  },
547
  "initializer_range": 0.02,
548
+ "intermediate_size": 3072,
549
  "label2id": {
550
+ "contradiction": 2,
551
+ "entailment": 0,
552
+ "neutral": 1
553
  },
554
  "layer_norm_eps": 1e-07,
555
+ "max_position_embeddings": 1680,
556
  "max_relative_positions": -1,
557
  "model_type": "deberta-v2",
558
  "norm_rel_ebd": "layer_norm",
559
+ "num_attention_heads": 12,
560
+ "num_hidden_layers": 6,
561
  "pad_token_id": 0,
562
  "pooler_dropout": 0,
563
  "pooler_hidden_act": "gelu",
564
+ "pooler_hidden_size": 768,
 
 
 
 
565
  "pos_att_type": [
566
  "p2c",
567
  "c2p"
 
570
  "position_buckets": 256,
571
  "relative_attention": true,
572
  "share_att_key": true,
573
+ "tasks": [
574
+ "glue/mnli",
575
+ "glue/qnli",
576
+ "glue/rte",
577
+ "glue/wnli",
578
+ "glue/mrpc",
579
+ "glue/qqp",
580
+ "glue/stsb",
581
+ "super_glue/boolq",
582
+ "super_glue/cb",
583
+ "super_glue/multirc",
584
+ "super_glue/wic",
585
+ "super_glue/axg",
586
+ "anli/a1",
587
+ "anli/a2",
588
+ "anli/a3",
589
+ "sick/label",
590
+ "sick/relatedness",
591
+ "sick/entailment_AB",
592
+ "snli",
593
+ "scitail/snli_format",
594
+ "hans",
595
+ "WANLI",
596
+ "recast/recast_ner",
597
+ "recast/recast_kg_relations",
598
+ "recast/recast_puns",
599
+ "recast/recast_verbcorner",
600
+ "recast/recast_sentiment",
601
+ "recast/recast_verbnet",
602
+ "recast/recast_factuality",
603
+ "recast/recast_megaveridicality",
604
+ "probability_words_nli/reasoning_2hop",
605
+ "probability_words_nli/reasoning_1hop",
606
+ "probability_words_nli/usnli",
607
+ "nan-nli",
608
+ "nli_fever",
609
+ "breaking_nli",
610
+ "conj_nli",
611
+ "fracas",
612
+ "dialogue_nli",
613
+ "mpe",
614
+ "dnc",
615
+ "recast_white/fnplus",
616
+ "recast_white/sprl",
617
+ "recast_white/dpr",
618
+ "joci",
619
+ "robust_nli/IS_CS",
620
+ "robust_nli/LI_LI",
621
+ "robust_nli/ST_WO",
622
+ "robust_nli/PI_SP",
623
+ "robust_nli/PI_CD",
624
+ "robust_nli/ST_SE",
625
+ "robust_nli/ST_NE",
626
+ "robust_nli/ST_LM",
627
+ "robust_nli_is_sd",
628
+ "robust_nli_li_ts",
629
+ "add_one_rte",
630
+ "imppres/implicature_quantifiers/log",
631
+ "imppres/implicature_numerals_2_3/log",
632
+ "imppres/implicature_gradable_adjective/log",
633
+ "imppres/implicature_connectives/log",
634
+ "imppres/implicature_modals/log",
635
+ "imppres/implicature_numerals_10_100/log",
636
+ "imppres/implicature_gradable_verb/log",
637
+ "hlgd",
638
+ "paws/labeled_final",
639
+ "paws/labeled_swap",
640
+ "medical_questions_pairs",
641
+ "model-written-evals",
642
+ "truthful_qa/multiple_choice",
643
+ "fig-qa",
644
+ "bigbench/bbq_lite_json",
645
+ "bigbench/english_proverbs",
646
+ "bigbench/figure_of_speech_detection",
647
+ "bigbench/emoji_movie",
648
+ "bigbench/date_understanding",
649
+ "bigbench/metaphor_understanding",
650
+ "bigbench/logical_fallacy_detection",
651
+ "bigbench/analogical_similarity",
652
+ "bigbench/mnist_ascii",
653
+ "bigbench/elementary_math_qa",
654
+ "bigbench/snarks",
655
+ "bigbench/social_support",
656
+ "bigbench/logical_deduction",
657
+ "bigbench/emojis_emotion_prediction",
658
+ "bigbench/sports_understanding",
659
+ "bigbench/cifar10_classification",
660
+ "bigbench/tracking_shuffled_objects",
661
+ "bigbench/physics",
662
+ "bigbench/mathematical_induction",
663
+ "bigbench/movie_dialog_same_or_different",
664
+ "bigbench/goal_step_wikihow",
665
+ "bigbench/strategyqa",
666
+ "bigbench/identify_math_theorems",
667
+ "bigbench/gre_reading_comprehension",
668
+ "bigbench/novel_concepts",
669
+ "bigbench/conceptual_combinations",
670
+ "bigbench/hyperbaton",
671
+ "bigbench/strange_stories",
672
+ "bigbench/contextual_parametric_knowledge_conflicts",
673
+ "bigbench/implicatures",
674
+ "bigbench/penguins_in_a_table",
675
+ "bigbench/logical_sequence",
676
+ "bigbench/simple_ethical_questions",
677
+ "bigbench/dyck_languages",
678
+ "bigbench/geometric_shapes",
679
+ "bigbench/irony_identification",
680
+ "bigbench/intent_recognition",
681
+ "bigbench/logical_args",
682
+ "bigbench/known_unknowns",
683
+ "bigbench/formal_fallacies_syllogisms_negation",
684
+ "bigbench/suicide_risk",
685
+ "bigbench/crash_blossom",
686
+ "bigbench/logic_grid_puzzle",
687
+ "bigbench/analytic_entailment",
688
+ "bigbench/dark_humor_detection",
689
+ "bigbench/timedial",
690
+ "bigbench/presuppositions_as_nli",
691
+ "bigbench/arithmetic",
692
+ "bigbench/implicit_relations",
693
+ "bigbench/understanding_fables",
694
+ "bigbench/salient_translation_error_detection",
695
+ "bigbench/anachronisms",
696
+ "bigbench/moral_permissibility",
697
+ "bigbench/abstract_narrative_understanding",
698
+ "bigbench/misconceptions",
699
+ "bigbench/nonsense_words_grammar",
700
+ "bigbench/code_line_description",
701
+ "bigbench/sentence_ambiguity",
702
+ "bigbench/disambiguation_qa",
703
+ "bigbench/crass_ai",
704
+ "bigbench/similarities_abstraction",
705
+ "bigbench/authorship_verification",
706
+ "bigbench/phrase_relatedness",
707
+ "bigbench/color",
708
+ "bigbench/hhh_alignment",
709
+ "bigbench/metaphor_boolean",
710
+ "bigbench/fantasy_reasoning",
711
+ "bigbench/ruin_names",
712
+ "bigbench/cause_and_effect",
713
+ "bigbench/temporal_sequences",
714
+ "bigbench/navigate",
715
+ "bigbench/symbol_interpretation",
716
+ "bigbench/key_value_maps",
717
+ "bigbench/entailed_polarity",
718
+ "bigbench/riddle_sense",
719
+ "bigbench/discourse_marker_prediction",
720
+ "bigbench/reasoning_about_colored_objects",
721
+ "bigbench/empirical_judgments",
722
+ "bigbench/fact_checker",
723
+ "bigbench/movie_recommendation",
724
+ "bigbench/checkmate_in_one",
725
+ "bigbench/epistemic_reasoning",
726
+ "bigbench/vitaminc_fact_verification",
727
+ "bigbench/general_knowledge",
728
+ "bigbench/identify_odd_metaphor",
729
+ "bigbench/physical_intuition",
730
+ "bigbench/winowhy",
731
+ "bigbench/cs_algorithms",
732
+ "bigbench/undo_permutation",
733
+ "bigbench/evaluating_information_essentiality",
734
+ "bigbench/unit_interpretation",
735
+ "bigbench/question_selection",
736
+ "bigbench/international_phonetic_alphabet_nli",
737
+ "bigbench/play_dialog_same_or_different",
738
+ "bigbench/real_or_fake_text",
739
+ "bigbench/human_organs_senses",
740
+ "bigbench/hindu_knowledge",
741
+ "bigbench/social_iqa",
742
+ "bigbench/odd_one_out",
743
+ "bigbench/causal_judgment",
744
+ "cos_e/v1.0",
745
+ "cosmos_qa",
746
+ "dream",
747
+ "openbookqa",
748
+ "qasc",
749
+ "quartz",
750
+ "quail",
751
+ "head_qa/en",
752
+ "sciq",
753
+ "social_i_qa",
754
+ "wiki_hop/original",
755
+ "wiqa",
756
+ "piqa",
757
+ "hellaswag",
758
+ "super_glue/copa",
759
+ "balanced-copa",
760
+ "e-CARE",
761
+ "art",
762
+ "winogrande/winogrande_xl",
763
+ "codah/codah",
764
+ "ai2_arc/ARC-Easy/challenge",
765
+ "ai2_arc/ARC-Challenge/challenge",
766
+ "definite_pronoun_resolution",
767
+ "swag/regular",
768
+ "math_qa",
769
+ "glue/cola",
770
+ "glue/sst2",
771
+ "utilitarianism",
772
+ "amazon_counterfactual/en",
773
+ "insincere-questions",
774
+ "toxic_conversations",
775
+ "TuringBench",
776
+ "trec",
777
+ "vitaminc",
778
+ "hope_edi/english",
779
+ "rumoureval_2019/RumourEval2019",
780
+ "ethos/binary",
781
+ "ethos/multilabel",
782
+ "tweet_eval/offensive",
783
+ "tweet_eval/sentiment",
784
+ "tweet_eval/irony",
785
+ "tweet_eval/hate",
786
+ "tweet_eval/emotion",
787
+ "tweet_eval/emoji",
788
+ "tweet_eval/stance_abortion",
789
+ "tweet_eval/stance_atheism",
790
+ "tweet_eval/stance_climate",
791
+ "tweet_eval/stance_feminist",
792
+ "tweet_eval/stance_hillary",
793
+ "discovery/discovery",
794
+ "pragmeval/squinky-formality",
795
+ "pragmeval/emobank-arousal",
796
+ "pragmeval/squinky-implicature",
797
+ "pragmeval/squinky-informativeness",
798
+ "pragmeval/switchboard",
799
+ "pragmeval/verifiability",
800
+ "pragmeval/mrda",
801
+ "pragmeval/emobank-valence",
802
+ "pragmeval/emobank-dominance",
803
+ "pragmeval/persuasiveness-strength",
804
+ "pragmeval/persuasiveness-relevance",
805
+ "pragmeval/pdtb",
806
+ "pragmeval/gum",
807
+ "pragmeval/stac",
808
+ "pragmeval/persuasiveness-specificity",
809
+ "pragmeval/sarcasm",
810
+ "pragmeval/persuasiveness-eloquence",
811
+ "pragmeval/emergent",
812
+ "pragmeval/persuasiveness-premisetype",
813
+ "pragmeval/persuasiveness-claimtype",
814
+ "silicone/meld_e",
815
+ "silicone/dyda_e",
816
+ "silicone/iemocap",
817
+ "silicone/sem",
818
+ "silicone/meld_s",
819
+ "silicone/oasis",
820
+ "silicone/maptask",
821
+ "silicone/dyda_da",
822
+ "lex_glue/eurlex",
823
+ "lex_glue/scotus",
824
+ "lex_glue/ledgar",
825
+ "lex_glue/unfair_tos",
826
+ "lex_glue/case_hold",
827
+ "language-identification",
828
+ "imdb",
829
+ "rotten_tomatoes",
830
+ "ag_news",
831
+ "yelp_review_full/yelp_review_full",
832
+ "financial_phrasebank/sentences_allagree",
833
+ "poem_sentiment",
834
+ "dbpedia_14/dbpedia_14",
835
+ "amazon_polarity/amazon_polarity",
836
+ "app_reviews",
837
+ "hate_speech18",
838
+ "sms_spam",
839
+ "humicroedit/subtask-1",
840
+ "humicroedit/subtask-2",
841
+ "snips_built_in_intents",
842
+ "hate_speech_offensive",
843
+ "yahoo_answers_topics",
844
+ "stackoverflow-questions",
845
+ "hyperpartisan_news",
846
+ "sciie",
847
+ "citation_intent",
848
+ "go_emotions/simplified",
849
+ "scicite",
850
+ "liar",
851
+ "lexical_relation_classification/CogALexV",
852
+ "lexical_relation_classification/EVALution",
853
+ "lexical_relation_classification/K&H+N",
854
+ "lexical_relation_classification/BLESS",
855
+ "lexical_relation_classification/ROOT09",
856
+ "linguisticprobing/obj_number",
857
+ "linguisticprobing/bigram_shift",
858
+ "linguisticprobing/subj_number",
859
+ "linguisticprobing/sentence_length",
860
+ "linguisticprobing/odd_man_out",
861
+ "linguisticprobing/tree_depth",
862
+ "linguisticprobing/top_constituents",
863
+ "linguisticprobing/coordination_inversion",
864
+ "linguisticprobing/past_present",
865
+ "crowdflower/sentiment_nuclear_power",
866
+ "crowdflower/tweet_global_warming",
867
+ "crowdflower/political-media-message",
868
+ "crowdflower/text_emotion",
869
+ "crowdflower/corporate-messaging",
870
+ "crowdflower/political-media-audience",
871
+ "crowdflower/airline-sentiment",
872
+ "crowdflower/political-media-bias",
873
+ "crowdflower/economic-news",
874
+ "ethics/commonsense",
875
+ "ethics/deontology",
876
+ "ethics/justice",
877
+ "ethics/virtue",
878
+ "emo/emo2019",
879
+ "google_wellformed_query",
880
+ "tweets_hate_speech_detection",
881
+ "has_part",
882
+ "blog_authorship_corpus/gender",
883
+ "blog_authorship_corpus/age",
884
+ "blog_authorship_corpus/job",
885
+ "open_question_type",
886
+ "health_fact",
887
+ "commonsense_qa",
888
+ "mc_taco",
889
+ "ade_corpus_v2/Ade_corpus_v2_classification",
890
+ "discosense",
891
+ "circa",
892
+ "phrase_similarity",
893
+ "scientific-exaggeration-detection",
894
+ "quarel",
895
+ "fever-evidence-related",
896
+ "numer_sense",
897
+ "dynasent/dynabench.dynasent.r1.all/r1",
898
+ "dynasent/dynabench.dynasent.r2.all/r2",
899
+ "Sarcasm_News_Headline",
900
+ "sem_eval_2010_task_8",
901
+ "auditor_review",
902
+ "medmcqa",
903
+ "Dynasent_Disagreement",
904
+ "Politeness_Disagreement",
905
+ "SBIC_Disagreement",
906
+ "SChem_Disagreement",
907
+ "Dilemmas_Disagreement",
908
+ "logiqa",
909
+ "wiki_qa",
910
+ "cycic_classification",
911
+ "cycic_multiplechoice",
912
+ "sts-companion",
913
+ "commonsense_qa_2.0",
914
+ "lingnli",
915
+ "monotonicity-entailment",
916
+ "arct",
917
+ "scinli",
918
+ "naturallogic",
919
+ "onestop_qa",
920
+ "moral_stories/full",
921
+ "prost",
922
+ "dynahate",
923
+ "syntactic-augmentation-nli",
924
+ "autotnli",
925
+ "CONDAQA",
926
+ "webgpt_comparisons",
927
+ "synthetic-instruct-gptj-pairwise",
928
+ "scruples",
929
+ "wouldyourather",
930
+ "defeasible-nli/atomic",
931
+ "defeasible-nli/snli",
932
+ "help-nli",
933
+ "nli-veridicality-transitivity",
934
+ "lonli",
935
+ "dadc-limit-nli",
936
+ "FLUTE",
937
+ "strategy-qa",
938
+ "summarize_from_feedback/comparisons",
939
+ "folio",
940
+ "tomi-nli",
941
+ "avicenna",
942
+ "SHP",
943
+ "MedQA-USMLE-4-options-hf",
944
+ "wikimedqa/medwiki",
945
+ "cicero",
946
+ "CREAK",
947
+ "mutual",
948
+ "NeQA",
949
+ "quote-repetition",
950
+ "redefine-math",
951
+ "puzzte",
952
+ "implicatures",
953
+ "race/middle",
954
+ "race/high",
955
+ "race-c",
956
+ "spartqa-yn",
957
+ "spartqa-mchoice",
958
+ "temporal-nli",
959
+ "riddle_sense",
960
+ "clcd-english",
961
+ "twentyquestions",
962
+ "reclor",
963
+ "counterfactually-augmented-imdb",
964
+ "counterfactually-augmented-snli",
965
+ "cnli",
966
+ "boolq-natural-perturbations",
967
+ "acceptability-prediction",
968
+ "equate",
969
+ "ScienceQA_text_only",
970
+ "ekar_english",
971
+ "implicit-hate-stg1",
972
+ "chaos-mnli-ambiguity",
973
+ "headline_cause/en_simple",
974
+ "logiqa-2.0-nli",
975
+ "oasst2_dense_flat/quality",
976
+ "oasst2_dense_flat/toxicity",
977
+ "oasst2_dense_flat/helpfulness",
978
+ "mindgames",
979
+ "ambient",
980
+ "path-naturalness-prediction",
981
+ "civil_comments/toxicity",
982
+ "civil_comments/severe_toxicity",
983
+ "civil_comments/obscene",
984
+ "civil_comments/threat",
985
+ "civil_comments/insult",
986
+ "civil_comments/identity_attack",
987
+ "civil_comments/sexual_explicit",
988
+ "cloth",
989
+ "dgen",
990
+ "I2D2",
991
+ "args_me",
992
+ "Touche23-ValueEval",
993
+ "starcon",
994
+ "banking77",
995
+ "ConTRoL-nli",
996
+ "tracie",
997
+ "sherliic",
998
+ "sen-making/1",
999
+ "sen-making/2",
1000
+ "winowhy",
1001
+ "robustLR",
1002
+ "v1/gen_train234_test2to10",
1003
+ "logical-fallacy",
1004
+ "parade",
1005
+ "cladder",
1006
+ "subjectivity",
1007
+ "MOH",
1008
+ "VUAC",
1009
+ "sharc_modified/mod",
1010
+ "conceptrules_v2",
1011
+ "disrpt/eng.dep.scidtb.rels",
1012
+ "zero-shot-label-nli",
1013
+ "com2sense",
1014
+ "scone",
1015
+ "winodict",
1016
+ "fool-me-twice",
1017
+ "monli",
1018
+ "corr2cause",
1019
+ "lsat_qa/all",
1020
+ "apt",
1021
+ "twitter-financial-news-sentiment",
1022
+ "icl-symbol-tuning-instruct",
1023
+ "SpaceNLI",
1024
+ "propsegment/nli",
1025
+ "HatemojiBuild",
1026
+ "regset",
1027
+ "esci",
1028
+ "chatbot_arena_conversations",
1029
+ "dnd_style_intents",
1030
+ "FLD.v2/default",
1031
+ "FLD.v2/star",
1032
+ "SDOH-NLI",
1033
+ "scifact_entailment",
1034
+ "feasibilityQA",
1035
+ "simple_pair",
1036
+ "AdjectiveScaleProbe-nli",
1037
+ "resnli",
1038
+ "SpaRTUN",
1039
+ "ReSQ",
1040
+ "semantic_fragments_nli",
1041
+ "dataset_train_nli",
1042
+ "stepgame",
1043
+ "nlgraph",
1044
+ "oasst2_pairwise_rlhf_reward",
1045
+ "hh-rlhf/helpful-base",
1046
+ "hh-rlhf/helpful-online",
1047
+ "hh-rlhf/helpful-rejection-sampled",
1048
+ "hh-rlhf/harmless-base",
1049
+ "ruletaker",
1050
+ "PARARULE-Plus",
1051
+ "proofwriter",
1052
+ "logical-entailment",
1053
+ "nope",
1054
+ "LogicNLI",
1055
+ "contract-nli/contractnli_a/seg",
1056
+ "contract-nli/contractnli_b/full",
1057
+ "nli4ct_semeval2024",
1058
+ "lsat-ar",
1059
+ "lsat-rc",
1060
+ "biosift-nli",
1061
+ "brainteasers/WP",
1062
+ "brainteasers/SP",
1063
+ "persuasion",
1064
+ "AmbigNQ-clarifying-question",
1065
+ "SIGA-nli",
1066
+ "FOL-nli",
1067
+ "goal-step-wikihow/order",
1068
+ "PARADISE",
1069
+ "doc-nli",
1070
+ "mctest-nli",
1071
+ "patent-phrase-similarity",
1072
+ "natural-language-satisfiability",
1073
+ "idioms-nli",
1074
+ "lifecycle-entailment",
1075
+ "HelpSteer/helpfulness",
1076
+ "HelpSteer/correctness",
1077
+ "HelpSteer/coherence",
1078
+ "HelpSteer/complexity",
1079
+ "HelpSteer/verbosity",
1080
+ "HelpSteer2/helpfulness",
1081
+ "HelpSteer2/correctness",
1082
+ "HelpSteer2/coherence",
1083
+ "HelpSteer2/complexity",
1084
+ "HelpSteer2/verbosity",
1085
+ "MSciNLI",
1086
+ "UltraFeedback-paired",
1087
+ "AES2-essay-scoring",
1088
+ "english-grading/cohesion",
1089
+ "english-grading/syntax",
1090
+ "english-grading/vocabulary",
1091
+ "english-grading/phraseology",
1092
+ "english-grading/grammar",
1093
+ "english-grading/conventions",
1094
+ "wice",
1095
+ "hover",
1096
+ "tasksource_dpo_pairs",
1097
+ "seahorse_summarization_evaluation",
1098
+ "missing-item-prediction/contrastive",
1099
+ "babi_nli",
1100
+ "gen_debiased_nli",
1101
+ "imppres/presupposition",
1102
+ "/prag",
1103
+ "blimp-2"
1104
+ ],
1105
  "torch_dtype": "float32",
1106
  "transformers_version": "4.44.2",
1107
  "type_vocab_size": 0,
features_ms_deberta_v3.json ADDED
The diff for this file is too large to render. See raw diff
 
finetune.py CHANGED
@@ -58,7 +58,7 @@ def gpu_function():
58
 
59
 
60
 
61
- GPU_CONFIG = modal.gpu.A100(count=2, size="80GB")
62
 
63
  @app.function(
64
  gpu=GPU_CONFIG, # self.params.gpu,
@@ -77,8 +77,12 @@ def run_finetune(data):
77
  print("CUDA device count:", torch.cuda.device_count())
78
 
79
  import pandas as pd
80
- open('./features_ms_deberta_v2.json', 'w').write(data)
81
- df = pd.read_json('./features_ms_deberta_v2.json', lines=False)
 
 
 
 
82
 
83
  from datasets import Dataset
84
  from transformers import (
@@ -87,6 +91,7 @@ def run_finetune(data):
87
 
88
  Trainer, TrainingArguments ,EvalPrediction,DataCollatorWithPadding
89
  )
 
90
  import numpy as np
91
  from itertools import chain
92
  import re
@@ -114,7 +119,7 @@ def run_finetune(data):
114
  model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
115
  # model_name = "MoritzLaurer/bge-m3-zeroshot-v2.0"
116
  # model_name = "cross-encoder/nli-deberta-v3-base"
117
- model_name = "microsoft/deberta-v2-xlarge-mnli"
118
 
119
  # Define the directory where the output/results will be saved
120
  output_dir = "./"
@@ -167,7 +172,7 @@ def run_finetune(data):
167
  # In[7]:
168
 
169
 
170
- train_data, test_data = train_test_split(df, test_size=0.3, random_state=42)
171
 
172
  # Shuffle the train_data DataFrame and create a new DataFrame with shuffled rows
173
  train_shuffle_df = train_data
@@ -225,9 +230,9 @@ def run_finetune(data):
225
  training_args = TrainingArguments(
226
  output_dir=output_dir, # Output directory
227
  logging_dir=output_dir + "/logs",# Output directory for logging
228
- num_train_epochs=3, # Total number of training epochs
229
- per_device_train_batch_size=2, # Batch size per device during training
230
- per_device_eval_batch_size=2, # Batch size for evaluation
231
  warmup_steps=4, # Number of warmup steps for learning rate scheduler
232
  weight_decay=0.01, # Strength of weight decay
233
  gradient_accumulation_steps=2, # The number of steps whose gradients are accumulated
@@ -241,10 +246,13 @@ def run_finetune(data):
241
  logging_first_step=True,
242
  do_eval=True,
243
  hub_model_id="rafaelsandroni/ms-deberta-v2-xlarge-mnli-finetuned-pt",
 
244
  )
245
 
246
 
247
  # In[15]:
 
 
248
 
249
 
250
  trainer = Trainer(
@@ -253,7 +261,8 @@ def run_finetune(data):
253
  train_dataset=train_dataset, # Training dataset
254
  eval_dataset=test_dataset, # Evaluation dataset
255
  tokenizer=tokenizer,
256
- compute_metrics=compute_metrics
 
257
  )
258
 
259
 
@@ -275,15 +284,6 @@ def run_finetune(data):
275
  v = 2
276
  commit = f"dev-v{v}-{t}"
277
  trainer.push_to_hub(commit, token=token)
278
- # predict
279
- for i, row in test_shuffle_df.iterrows():
280
- pred_model = trainer.model([row["premise"], row["hypothesis"]])
281
- print(pred_model, row["class"])
282
- # In[ ]:
283
-
284
-
285
- model.eval()
286
-
287
 
288
 
289
 
@@ -294,7 +294,7 @@ def run():
294
  import pandas as pd
295
  t0 = time.time()
296
  #df = pd.read_json('./features_ms_deberta_v2.json', lines=False)
297
- with open('./features_ms_deberta_v2.json') as f:
298
  data = f.read()
299
  run_finetune.remote(data)
300
 
 
58
 
59
 
60
 
61
+ GPU_CONFIG = modal.gpu.A100(count=1, size="80GB")
62
 
63
  @app.function(
64
  gpu=GPU_CONFIG, # self.params.gpu,
 
77
  print("CUDA device count:", torch.cuda.device_count())
78
 
79
  import pandas as pd
80
+ open('./features_ms_deberta_v3.json', 'w').write(data)
81
+ df = pd.read_json('./features_ms_deberta_v3.json', lines=False)
82
+ dfs = []
83
+ for _ in range(50):
84
+ dfs.append(df)
85
+ df = pd.concat(dfs, ignore_index=True)
86
 
87
  from datasets import Dataset
88
  from transformers import (
 
91
 
92
  Trainer, TrainingArguments ,EvalPrediction,DataCollatorWithPadding
93
  )
94
+ from transformers import EarlyStoppingCallback
95
  import numpy as np
96
  from itertools import chain
97
  import re
 
119
  model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
120
  # model_name = "MoritzLaurer/bge-m3-zeroshot-v2.0"
121
  # model_name = "cross-encoder/nli-deberta-v3-base"
122
+ model_name = "tasksource/deberta-small-long-nli"
123
 
124
  # Define the directory where the output/results will be saved
125
  output_dir = "./"
 
172
  # In[7]:
173
 
174
 
175
+ train_data, test_data = train_test_split(df, test_size=0.1, random_state=42)
176
 
177
  # Shuffle the train_data DataFrame and create a new DataFrame with shuffled rows
178
  train_shuffle_df = train_data
 
230
  training_args = TrainingArguments(
231
  output_dir=output_dir, # Output directory
232
  logging_dir=output_dir + "/logs",# Output directory for logging
233
+ num_train_epochs=1, # Total number of training epochs
234
+ per_device_train_batch_size=16, # Batch size per device during training
235
+ per_device_eval_batch_size=16, # Batch size for evaluation
236
  warmup_steps=4, # Number of warmup steps for learning rate scheduler
237
  weight_decay=0.01, # Strength of weight decay
238
  gradient_accumulation_steps=2, # The number of steps whose gradients are accumulated
 
246
  logging_first_step=True,
247
  do_eval=True,
248
  hub_model_id="rafaelsandroni/ms-deberta-v2-xlarge-mnli-finetuned-pt",
249
+ load_best_model_at_end=True,
250
  )
251
 
252
 
253
  # In[15]:
254
+
255
+ callbacks = [EarlyStoppingCallback(early_stopping_patience=3)]
256
 
257
 
258
  trainer = Trainer(
 
261
  train_dataset=train_dataset, # Training dataset
262
  eval_dataset=test_dataset, # Evaluation dataset
263
  tokenizer=tokenizer,
264
+ compute_metrics=compute_metrics,
265
+ callbacks=callbacks
266
  )
267
 
268
 
 
284
  v = 2
285
  commit = f"dev-v{v}-{t}"
286
  trainer.push_to_hub(commit, token=token)
 
 
 
 
 
 
 
 
 
287
 
288
 
289
 
 
294
  import pandas as pd
295
  t0 = time.time()
296
  #df = pd.read_json('./features_ms_deberta_v2.json', lines=False)
297
+ with open('./features_ms_deberta_v3.json') as f:
298
  data = f.read()
299
  run_finetune.remote(data)
300
 
logs/events.out.tfevents.1724725103.modal.2.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c64adf7268903d8e1a57092586040cdc767d5cbba6e9ec9fa5e474de10deed1
3
+ size 54531
logs/events.out.tfevents.1724725505.modal.2.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d6bc56408583b74aeb274c40e1aa47606b5336d596ef2f968c5e4f9f3998d4a
3
+ size 609
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e19f1cdad97fb8d9e7d868cf21b586c53b3b1ac414d4ff676b34fcc245fafee
3
- size 3547884268
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6334b199dda92d20aa4e2d1408025de9b46734324097a006e55556eff6ef2943
3
+ size 567601628
special_tokens_map.json CHANGED
@@ -1,10 +1,46 @@
1
  {
2
- "bos_token": "[CLS]",
3
- "cls_token": "[CLS]",
4
- "eos_token": "[SEP]",
5
- "mask_token": "[MASK]",
6
- "pad_token": "[PAD]",
7
- "sep_token": "[SEP]",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  "unk_token": {
9
  "content": "[UNK]",
10
  "lstrip": false,
 
1
  {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
  "unk_token": {
45
  "content": "[UNK]",
46
  "lstrip": false,
spm.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5598d5e96f339a8d980c15f9afd405a2e5e1be7db41de3ed13b0f03fac1e8c17
3
- size 2447305
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -47,12 +47,19 @@
47
  "do_lower_case": false,
48
  "eos_token": "[SEP]",
49
  "mask_token": "[MASK]",
50
- "model_max_length": 512,
 
 
51
  "pad_token": "[PAD]",
 
 
52
  "sep_token": "[SEP]",
53
  "sp_model_kwargs": {},
54
  "split_by_punct": false,
 
55
  "tokenizer_class": "DebertaV2Tokenizer",
 
 
56
  "unk_token": "[UNK]",
57
  "vocab_type": "spm"
58
  }
 
47
  "do_lower_case": false,
48
  "eos_token": "[SEP]",
49
  "mask_token": "[MASK]",
50
+ "max_length": 1680,
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
  "sep_token": "[SEP]",
57
  "sp_model_kwargs": {},
58
  "split_by_punct": false,
59
+ "stride": 0,
60
  "tokenizer_class": "DebertaV2Tokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]",
64
  "vocab_type": "spm"
65
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:919b327360e865115024a79bfb9a7c9c2a4976a465b7ea7dbab24e13a14eb474
3
  size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8f36e6350dbd0271210951e69cf655fcf20e165b523f134f106da097aeaf403
3
  size 5176