--- library_name: transformers license: mit base_model: microsoft/deberta-v2-xlarge-mnli tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ms-deberta-v2-xlarge-mnli-finetuned-pt results: [] --- # ms-deberta-v2-xlarge-mnli-finetuned-pt This model is a fine-tuned version of [microsoft/deberta-v2-xlarge-mnli](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7274 - Accuracy: 0.8571 - Precision: 0.4286 - Recall: 0.5 - F1: 0.4615 - Ratio: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 3 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----:| | 0.8996 | 1.5385 | 10 | 0.6120 | 0.8571 | 0.4286 | 0.5 | 0.4615 | 0.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1