--- tags: - sentence-transformers - sentence-similarity - loss:OnlineContrastiveLoss base_model: Alibaba-NLP/gte-modernbert-base pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_precision - cosine_recall - cosine_f1 - cosine_ap model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base results: - task: type: my-binary-classification name: My Binary Classification dataset: name: Medical type: unknown metrics: - type: cosine_accuracy value: 0.92 name: Cosine Accuracy - type: cosine_f1 value: 0.93 name: Cosine F1 - type: cosine_precision value: 0.92 name: Cosine Precision - type: cosine_recall value: 0.93 name: Cosine Recall - type: cosine_ap value: 0.97 name: Cosine Ap --- # Redis semantic caching embedding model based on Alibaba-NLP/gte-modernbert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [Medical]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching in the medical domain. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [Medical]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data) ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("redis/langcache-embed-medical-v1") # Run inference sentences = [ 'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?', 'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?', "Are Danish Sait's prank calls fake?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) ``` #### Binary Classification | Metric | Value | |:--------------------------|:----------| | cosine_accuracy | 0.92 | | cosine_f1 | 0.93 | | cosine_precision | 0.92 | | cosine_recall | 0.93 | | **cosine_ap** | 0.97 | ### Training Dataset #### Medical * Dataset: [Medical dataset]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data) * Size: 2438 samples * Columns: question_1, question_2, and label ### Evaluation Dataset #### Medical * Dataset: [Medical dataset]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data) * Size: 610 samples * Columns: question_1, question_2, and label ## Citation ### BibTeX #### Redis Langcache-embed Models] ```bibtex @inproceedings{langcache-embed-v1, title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data", author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion", month = "04", year = "2025", url = "https://arxiv.org/abs/2504.02268", } ``` #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```