File size: 22,829 Bytes
eb6241a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:178
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-reranker-base
widget:
- source_sentence: What is the basis for the company's calculation of deferred tax
    assets and liabilities?
  sentences:
  - ' We could be subject to various penalties or restrictions on our ability to conduct
    our business, which could have a material and adverse impact on our business,
    operating results, and financial condition.'
  - ' The company''s calculation of deferred tax assets and liabilities is based on
    certain estimates and judgments and involves dealing with uncertainties in the
    application of complex tax laws.'
  - ' March 4, 2024.'
- source_sentence: What are some situations that may result in excess or obsolete
    inventory or excess product purchase commitments?
  sentences:
  - ' 20%'
  - ' NVIDIA''s common stock is traded on the Nasdaq Global Select Market under the
    symbol NVDA.'
  - ' Changes in business and economic conditions, changes in market conditions, sudden
    and significant decreases in demand for products, inventory obsolescence due to
    changing technology and customer requirements, new product introductions, failure
    to estimate customer demand properly, ordering in advance of historical lead-times,
    government regulations, and changes in future demand or increase in demand for
    competitive products.'
- source_sentence: What are the primary methods used by the company to protect its
    intellectual property?
  sentences:
  - ' The change resulted in an increase in operating income of $135 million and net
    income of $114 million after tax, or $0.05 per both basic and diluted share.'
  - ' Forfeitures are estimated based on historical experience and revised semi-annually
    if actual forfeitures differ from those estimates.'
  - ' The company relies primarily on a combination of patents, trademarks, trade
    secrets, employee and third-party nondisclosure agreements, and licensing arrangements
    to protect its intellectual property in the United States and internationally.'
- source_sentence: What are the potential consequences of an unfavorable outcome in
    the litigation and regulatory proceedings mentioned in the text?
  sentences:
  - ' The new licensing requirements apply to exports of certain products, including
    A100, A800, H100, H800, L4, L40, L40S, and RTX 4090, exceeding certain performance
    thresholds to China, Country Groups D1, D4, and D5, and to parties headquartered
    in or with an ultimate parent headquartered in Country Group D5, including China.'
  - ' Adverse rulings could occur, including monetary damages or fines, an injunction
    stopping the company from manufacturing or selling certain products, engaging
    in certain business practices, or requiring other remedies, such as compulsory
    licensing of patents.'
  - ' The main components of the NVIDIA accelerated computing platform include GPUs,
    DPUs, interconnects, and fully optimized AI and high-performance computing software
    stacks.'
- source_sentence: What are the potential risks associated with the company's acquisitions
    and strategic investments?
  sentences:
  - ' $7,280.'
  - ' The company could face significant consequences, including government enforcement
    actions, litigation, additional reporting requirements and/or oversight, bans
    on processing personal data, and orders to destroy or not use personal data, which
    could have a material adverse effect on its reputation, business, or financial
    condition.'
  - ' The potential risks include impairment of the company''s ability to grow its
    business, develop new products, or sell its products, as well as the possibility
    of regulatory conditions reducing the value of the acquisition, volatility in
    results, losses up to the value of the investment, and impairment losses due to
    the failure of the invested companies.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-reranker-base
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: bge base en
      type: bge-base-en
    metrics:
    - type: cosine_accuracy@1
      value: 0.0056179775280898875
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.05056179775280899
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.0898876404494382
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.16853932584269662
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0056179775280898875
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.016853932584269662
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.017977528089887642
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.016853932584269662
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0056179775280898875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.05056179775280899
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.0898876404494382
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.16853932584269662
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.07282854323415827
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.044208132691278754
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.07494028485986497
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.016853932584269662
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.033707865168539325
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.08426966292134831
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.1853932584269663
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.016853932584269662
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.011235955056179775
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.016853932584269662
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.018539325842696634
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.016853932584269662
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.033707865168539325
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.08426966292134831
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.1853932584269663
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.07894273048552719
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.04782637774210808
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.07569131465859923
      name: Dot Map@100
---

# SentenceTransformer based on BAAI/bge-reranker-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) <!-- at revision 2cfc18c9415c912f9d8155881c133215df768a70 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rezarahim/bge-finetuned-reranker")
# Run inference
sentences = [
    "What are the potential risks associated with the company's acquisitions and strategic investments?",
    " The potential risks include impairment of the company's ability to grow its business, develop new products, or sell its products, as well as the possibility of regulatory conditions reducing the value of the acquisition, volatility in results, losses up to the value of the investment, and impairment losses due to the failure of the invested companies.",
    ' $7,280.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `bge-base-en`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0056     |
| cosine_accuracy@3   | 0.0506     |
| cosine_accuracy@5   | 0.0899     |
| cosine_accuracy@10  | 0.1685     |
| cosine_precision@1  | 0.0056     |
| cosine_precision@3  | 0.0169     |
| cosine_precision@5  | 0.018      |
| cosine_precision@10 | 0.0169     |
| cosine_recall@1     | 0.0056     |
| cosine_recall@3     | 0.0506     |
| cosine_recall@5     | 0.0899     |
| cosine_recall@10    | 0.1685     |
| cosine_ndcg@10      | 0.0728     |
| cosine_mrr@10       | 0.0442     |
| cosine_map@100      | 0.0749     |
| dot_accuracy@1      | 0.0169     |
| dot_accuracy@3      | 0.0337     |
| dot_accuracy@5      | 0.0843     |
| dot_accuracy@10     | 0.1854     |
| dot_precision@1     | 0.0169     |
| dot_precision@3     | 0.0112     |
| dot_precision@5     | 0.0169     |
| dot_precision@10    | 0.0185     |
| dot_recall@1        | 0.0169     |
| dot_recall@3        | 0.0337     |
| dot_recall@5        | 0.0843     |
| dot_recall@10       | 0.1854     |
| dot_ndcg@10         | 0.0789     |
| dot_mrr@10          | 0.0478     |
| **dot_map@100**     | **0.0757** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### train

* Dataset: train
* Size: 178 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 178 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 12 tokens</li><li>mean: 23.55 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 42.22 tokens</li><li>max: 135 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                              | positive                                                                                                                                                                            |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the publication date of the NVIDIA Corporation Annual Report 2024?</code>                                                                                                                                             | <code> February 21st, 2024</code>                                                                                                                                                   |
  | <code>What is the filing date of the 10-K report for NVIDIA Corporation in 2004?</code>                                                                                                                                             | <code> The filing dates of the 10-K reports for NVIDIA Corporation in 2004 are May 20th, March 29th, and April 25th.</code>                                                         |
  | <code>What is the purpose of the section of the filing that requires the registrant to indicate whether it has submitted electronically every Interactive Data File required to be submitted during the preceding 12 months?</code> | <code> The purpose of this section is to comply with Rule 405 of Regulation S-T, which requires the registrant to submit electronic files for certain financial information.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 25
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | bge-base-en_dot_map@100 |
|:----------:|:------:|:-------------:|:-----------------------:|
| 0          | 0      | -             | 0.0362                  |
| 0.7111     | 2      | -             | 0.0369                  |
| 1.7778     | 5      | -             | 0.0539                  |
| 2.8444     | 8      | -             | 0.0393                  |
| 3.5556     | 10     | 2.0824        | -                       |
| 3.9111     | 11     | -             | 0.0559                  |
| 4.9778     | 14     | -             | 0.0632                  |
| **5.6889** | **16** | **-**         | **0.08**                |
| 6.7556     | 19     | -             | 0.0692                  |
| 7.1111     | 20     | 1.2812        | -                       |
| 7.8222     | 22     | -             | 0.0627                  |
| 8.8889     | 25     | -             | 0.0623                  |
| 9.9556     | 28     | -             | 0.0692                  |
| 10.6667    | 30     | 1.0855        | 0.0884                  |
| 11.7333    | 33     | -             | 0.0754                  |
| 12.8       | 36     | -             | 0.0607                  |
| 13.8667    | 39     | -             | 0.0725                  |
| 14.2222    | 40     | 0.8978        | -                       |
| 14.9333    | 42     | -             | 0.0747                  |
| 16.0       | 45     | -             | 0.0766                  |
| 16.7111    | 47     | -             | 0.0756                  |
| 17.7778    | 50     | 0.8563        | 0.0757                  |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->