File size: 22,829 Bytes
eb6241a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:178
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-reranker-base
widget:
- source_sentence: What is the basis for the company's calculation of deferred tax
assets and liabilities?
sentences:
- ' We could be subject to various penalties or restrictions on our ability to conduct
our business, which could have a material and adverse impact on our business,
operating results, and financial condition.'
- ' The company''s calculation of deferred tax assets and liabilities is based on
certain estimates and judgments and involves dealing with uncertainties in the
application of complex tax laws.'
- ' March 4, 2024.'
- source_sentence: What are some situations that may result in excess or obsolete
inventory or excess product purchase commitments?
sentences:
- ' 20%'
- ' NVIDIA''s common stock is traded on the Nasdaq Global Select Market under the
symbol NVDA.'
- ' Changes in business and economic conditions, changes in market conditions, sudden
and significant decreases in demand for products, inventory obsolescence due to
changing technology and customer requirements, new product introductions, failure
to estimate customer demand properly, ordering in advance of historical lead-times,
government regulations, and changes in future demand or increase in demand for
competitive products.'
- source_sentence: What are the primary methods used by the company to protect its
intellectual property?
sentences:
- ' The change resulted in an increase in operating income of $135 million and net
income of $114 million after tax, or $0.05 per both basic and diluted share.'
- ' Forfeitures are estimated based on historical experience and revised semi-annually
if actual forfeitures differ from those estimates.'
- ' The company relies primarily on a combination of patents, trademarks, trade
secrets, employee and third-party nondisclosure agreements, and licensing arrangements
to protect its intellectual property in the United States and internationally.'
- source_sentence: What are the potential consequences of an unfavorable outcome in
the litigation and regulatory proceedings mentioned in the text?
sentences:
- ' The new licensing requirements apply to exports of certain products, including
A100, A800, H100, H800, L4, L40, L40S, and RTX 4090, exceeding certain performance
thresholds to China, Country Groups D1, D4, and D5, and to parties headquartered
in or with an ultimate parent headquartered in Country Group D5, including China.'
- ' Adverse rulings could occur, including monetary damages or fines, an injunction
stopping the company from manufacturing or selling certain products, engaging
in certain business practices, or requiring other remedies, such as compulsory
licensing of patents.'
- ' The main components of the NVIDIA accelerated computing platform include GPUs,
DPUs, interconnects, and fully optimized AI and high-performance computing software
stacks.'
- source_sentence: What are the potential risks associated with the company's acquisitions
and strategic investments?
sentences:
- ' $7,280.'
- ' The company could face significant consequences, including government enforcement
actions, litigation, additional reporting requirements and/or oversight, bans
on processing personal data, and orders to destroy or not use personal data, which
could have a material adverse effect on its reputation, business, or financial
condition.'
- ' The potential risks include impairment of the company''s ability to grow its
business, develop new products, or sell its products, as well as the possibility
of regulatory conditions reducing the value of the acquisition, volatility in
results, losses up to the value of the investment, and impairment losses due to
the failure of the invested companies.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-reranker-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: bge base en
type: bge-base-en
metrics:
- type: cosine_accuracy@1
value: 0.0056179775280898875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.05056179775280899
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0898876404494382
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.16853932584269662
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0056179775280898875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.016853932584269662
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.017977528089887642
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.016853932584269662
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0056179775280898875
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.05056179775280899
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0898876404494382
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.16853932584269662
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.07282854323415827
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.044208132691278754
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.07494028485986497
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.016853932584269662
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.033707865168539325
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.08426966292134831
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.1853932584269663
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.016853932584269662
name: Dot Precision@1
- type: dot_precision@3
value: 0.011235955056179775
name: Dot Precision@3
- type: dot_precision@5
value: 0.016853932584269662
name: Dot Precision@5
- type: dot_precision@10
value: 0.018539325842696634
name: Dot Precision@10
- type: dot_recall@1
value: 0.016853932584269662
name: Dot Recall@1
- type: dot_recall@3
value: 0.033707865168539325
name: Dot Recall@3
- type: dot_recall@5
value: 0.08426966292134831
name: Dot Recall@5
- type: dot_recall@10
value: 0.1853932584269663
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.07894273048552719
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.04782637774210808
name: Dot Mrr@10
- type: dot_map@100
value: 0.07569131465859923
name: Dot Map@100
---
# SentenceTransformer based on BAAI/bge-reranker-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) <!-- at revision 2cfc18c9415c912f9d8155881c133215df768a70 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rezarahim/bge-finetuned-reranker")
# Run inference
sentences = [
"What are the potential risks associated with the company's acquisitions and strategic investments?",
" The potential risks include impairment of the company's ability to grow its business, develop new products, or sell its products, as well as the possibility of regulatory conditions reducing the value of the acquisition, volatility in results, losses up to the value of the investment, and impairment losses due to the failure of the invested companies.",
' $7,280.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `bge-base-en`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0056 |
| cosine_accuracy@3 | 0.0506 |
| cosine_accuracy@5 | 0.0899 |
| cosine_accuracy@10 | 0.1685 |
| cosine_precision@1 | 0.0056 |
| cosine_precision@3 | 0.0169 |
| cosine_precision@5 | 0.018 |
| cosine_precision@10 | 0.0169 |
| cosine_recall@1 | 0.0056 |
| cosine_recall@3 | 0.0506 |
| cosine_recall@5 | 0.0899 |
| cosine_recall@10 | 0.1685 |
| cosine_ndcg@10 | 0.0728 |
| cosine_mrr@10 | 0.0442 |
| cosine_map@100 | 0.0749 |
| dot_accuracy@1 | 0.0169 |
| dot_accuracy@3 | 0.0337 |
| dot_accuracy@5 | 0.0843 |
| dot_accuracy@10 | 0.1854 |
| dot_precision@1 | 0.0169 |
| dot_precision@3 | 0.0112 |
| dot_precision@5 | 0.0169 |
| dot_precision@10 | 0.0185 |
| dot_recall@1 | 0.0169 |
| dot_recall@3 | 0.0337 |
| dot_recall@5 | 0.0843 |
| dot_recall@10 | 0.1854 |
| dot_ndcg@10 | 0.0789 |
| dot_mrr@10 | 0.0478 |
| **dot_map@100** | **0.0757** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### train
* Dataset: train
* Size: 178 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 178 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 23.55 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 42.22 tokens</li><li>max: 135 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the publication date of the NVIDIA Corporation Annual Report 2024?</code> | <code> February 21st, 2024</code> |
| <code>What is the filing date of the 10-K report for NVIDIA Corporation in 2004?</code> | <code> The filing dates of the 10-K reports for NVIDIA Corporation in 2004 are May 20th, March 29th, and April 25th.</code> |
| <code>What is the purpose of the section of the filing that requires the registrant to indicate whether it has submitted electronically every Interactive Data File required to be submitted during the preceding 12 months?</code> | <code> The purpose of this section is to comply with Rule 405 of Regulation S-T, which requires the registrant to submit electronic files for certain financial information.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 25
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | bge-base-en_dot_map@100 |
|:----------:|:------:|:-------------:|:-----------------------:|
| 0 | 0 | - | 0.0362 |
| 0.7111 | 2 | - | 0.0369 |
| 1.7778 | 5 | - | 0.0539 |
| 2.8444 | 8 | - | 0.0393 |
| 3.5556 | 10 | 2.0824 | - |
| 3.9111 | 11 | - | 0.0559 |
| 4.9778 | 14 | - | 0.0632 |
| **5.6889** | **16** | **-** | **0.08** |
| 6.7556 | 19 | - | 0.0692 |
| 7.1111 | 20 | 1.2812 | - |
| 7.8222 | 22 | - | 0.0627 |
| 8.8889 | 25 | - | 0.0623 |
| 9.9556 | 28 | - | 0.0692 |
| 10.6667 | 30 | 1.0855 | 0.0884 |
| 11.7333 | 33 | - | 0.0754 |
| 12.8 | 36 | - | 0.0607 |
| 13.8667 | 39 | - | 0.0725 |
| 14.2222 | 40 | 0.8978 | - |
| 14.9333 | 42 | - | 0.0747 |
| 16.0 | 45 | - | 0.0766 |
| 16.7111 | 47 | - | 0.0756 |
| 17.7778 | 50 | 0.8563 | 0.0757 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |