rshwndsz commited on
Commit
d29a56d
·
verified ·
1 Parent(s): 0cdf8ba

Add files using upload-large-folder tool

Browse files
Files changed (38) hide show
  1. .gitattributes +1 -0
  2. config.json +36 -0
  3. generation_config.json +10 -0
  4. global_step1433/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. global_step1433/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. global_step1433/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. global_step1433/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. global_step1433/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. global_step1433/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. global_step1433/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. global_step1433/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. global_step1433/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. global_step1433/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. global_step1433/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. global_step1433/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. global_step1433/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. global_step1433/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. global_step1433/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. global_step1433/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. latest +1 -0
  21. model-00001-of-00002.safetensors +3 -0
  22. model-00002-of-00002.safetensors +3 -0
  23. model.safetensors.index.json +261 -0
  24. rng_state_0.pth +3 -0
  25. rng_state_1.pth +3 -0
  26. rng_state_2.pth +3 -0
  27. rng_state_3.pth +3 -0
  28. rng_state_4.pth +3 -0
  29. rng_state_5.pth +3 -0
  30. rng_state_6.pth +3 -0
  31. rng_state_7.pth +3 -0
  32. scheduler.pt +3 -0
  33. special_tokens_map.json +21 -0
  34. tokenizer.json +3 -0
  35. tokenizer_config.json +2084 -0
  36. trainer_state.json +1321 -0
  37. training_args.bin +3 -0
  38. zero_to_fp32.py +760 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128256,
8
+ "eos_token_id": 128257,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128257,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.50.0",
34
+ "use_cache": false,
35
+ "vocab_size": 128258
36
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128256,
4
+ "do_sample": true,
5
+ "eos_token_id": 128257,
6
+ "pad_token_id": 128257,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.50.0"
10
+ }
global_step1433/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ea61638950ffd38930defe5b07ce57402f01d04c24072531d55872960e7f3da
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dea8f69b2599f24d8aeee9119a615389c18f51512c07af037fb31c124a02073f
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b80e373d800648643b055a9db8b32745d3be500ade232da2500398717e7966
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d140bcf693ea24dd98379c64fac54d30d3a08240f955eaf0619f7cbb1a95540
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a54c9171f758224176970d1f06a86fb5873885206ac022dff767d9d13e2a283
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5605f9f76336da2524cf39e5a89c43299465566fe9e384562545aa1e55a650f5
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:690f064db01d99d60ad647bad862eb5a9bb6f108a41b2b85372ac64f576e4836
3
+ size 4819138908
global_step1433/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9452a9a469a0dd048fe527ee6016b96da5b304c74d48067182237fc2e7d4cefe
3
+ size 4819138908
global_step1433/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f48f3ce9074df664936615085014d88a8053d0efe81397d6e99d48ceef8b0912
3
+ size 130292
global_step1433/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbf4cee058c05475ed2ee3a3fa6bb331a125cb2e84c4cd2609fcc8ffc7dc3943
3
+ size 130228
global_step1433/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d7e75418c7549acc08bc17a389eae77c1397af1f7f541de19da995cfcadb49
3
+ size 130228
global_step1433/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6cc1b3d67d9143659bd0c845c12c4a85e22c59c80ea18e557f2d513fe422f42
3
+ size 130228
global_step1433/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8b5ef9e0cd928039dd144ad7332b4e568fe9d733d911d836cda7286b475fffb
3
+ size 130228
global_step1433/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:568f227cff5193eb28694c32e582810bb7640cd1f4d241dea39cdd705d999977
3
+ size 130228
global_step1433/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e33a08b57a2a880406433d5d87a10794ebc97b5599c13d6cf40dd0732c8e0c
3
+ size 130228
global_step1433/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:846c2f59ea934e872e3242641c4982627ae80b6d00545303162f29fdeff2002e
3
+ size 130228
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1433
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33b91f0548c8c6cd3fd3ed9434986a7ff0d38cfc0f89703d9a883f31da332285
3
+ size 4965811384
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c7df0ab89cefbe0832c959ca8d35c412873aab7c593b0b04945aeb24cf2185a
3
+ size 1459729952
model.safetensors.index.json ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6425511936
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
125
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.norm.weight": "model-00002-of-00002.safetensors"
260
+ }
261
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:955b895101e13c81ba510512313a06782795770a0bf998c90f718166d25f1664
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:096e351ace65ff91008be171a45173ed6369cc639fce73a288f671041e24b0ec
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f21c61b1a7e793bbdec183de3b52da90042305234bc7e5887986655cd3fc2192
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:348742498d81780506d9760c655a7a7555185b5fbd70a7ae296d88fd9aeecd84
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:399c4700dab9ae7b754110ce307fb7e26e22cb49b5bb233c435f0f12b77c202f
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:864ea2379cc907eb4189c52706cb978150d9c26e18abf74679590729a8f0c8e8
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25755ba07299ee6ff45936dd04df329596319c9f8095af71e6f3a219e7543e26
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:908f018cd701ed629c41299726da4a25f202f20a1d4bc2075a2266ed4013db3a
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d427428dba1531aa627ec053886efe6432b8dcbc9cb32283f3906476f030ec86
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_start|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_end|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": "<|im_start|>",
19
+ "eos_token": "<|im_end|>",
20
+ "pad_token": "<|im_end|>"
21
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:510d12ec255f4cb0304aa5428d699c354c1a49696b427a2748a7b03bb7bbb575
3
+ size 17210296
tokenizer_config.json ADDED
@@ -0,0 +1,2084 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<|im_start|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ },
2059
+ "128257": {
2060
+ "content": "<|im_end|>",
2061
+ "lstrip": false,
2062
+ "normalized": false,
2063
+ "rstrip": false,
2064
+ "single_word": false,
2065
+ "special": true
2066
+ }
2067
+ },
2068
+ "additional_special_tokens": [
2069
+ "<|im_start|>",
2070
+ "<|im_end|>"
2071
+ ],
2072
+ "bos_token": "<|im_start|>",
2073
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
2074
+ "clean_up_tokenization_spaces": true,
2075
+ "eos_token": "<|im_end|>",
2076
+ "extra_special_tokens": {},
2077
+ "model_input_names": [
2078
+ "input_ids",
2079
+ "attention_mask"
2080
+ ],
2081
+ "model_max_length": 131072,
2082
+ "pad_token": "<|im_end|>",
2083
+ "tokenizer_class": "PreTrainedTokenizer"
2084
+ }
trainer_state.json ADDED
@@ -0,0 +1,1321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9993897654955975,
6
+ "eval_steps": 500,
7
+ "global_step": 1433,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.006974108621741784,
14
+ "grad_norm": 0.688457805080053,
15
+ "learning_rate": 1.9860432658757853e-05,
16
+ "loss": 1.3631,
17
+ "mean_token_accuracy": 0.6943508125841618,
18
+ "num_tokens": 5229064.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.013948217243483567,
23
+ "grad_norm": 0.5439133318015767,
24
+ "learning_rate": 1.97208653175157e-05,
25
+ "loss": 1.2528,
26
+ "mean_token_accuracy": 0.7125612020492553,
27
+ "num_tokens": 10423584.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.02092232586522535,
32
+ "grad_norm": 0.5722640770515585,
33
+ "learning_rate": 1.9581297976273553e-05,
34
+ "loss": 1.1962,
35
+ "mean_token_accuracy": 0.7207355432212352,
36
+ "num_tokens": 15634116.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.027896434486967134,
41
+ "grad_norm": 0.5488956860072914,
42
+ "learning_rate": 1.9441730635031405e-05,
43
+ "loss": 1.2132,
44
+ "mean_token_accuracy": 0.716521855443716,
45
+ "num_tokens": 20860231.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.03487054310870892,
50
+ "grad_norm": 0.5834125471606318,
51
+ "learning_rate": 1.9302163293789256e-05,
52
+ "loss": 1.1552,
53
+ "mean_token_accuracy": 0.7272165879607201,
54
+ "num_tokens": 26081133.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.0418446517304507,
59
+ "grad_norm": 0.5800038138992596,
60
+ "learning_rate": 1.9162595952547104e-05,
61
+ "loss": 1.173,
62
+ "mean_token_accuracy": 0.7218711204826832,
63
+ "num_tokens": 31291225.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.048818760352192486,
68
+ "grad_norm": 0.6475335995024639,
69
+ "learning_rate": 1.9023028611304956e-05,
70
+ "loss": 1.1409,
71
+ "mean_token_accuracy": 0.7277519389986992,
72
+ "num_tokens": 36487407.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.05579286897393427,
77
+ "grad_norm": 0.6627051913682367,
78
+ "learning_rate": 1.8883461270062808e-05,
79
+ "loss": 1.1267,
80
+ "mean_token_accuracy": 0.729830888658762,
81
+ "num_tokens": 41693997.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.06276697759567605,
86
+ "grad_norm": 0.6420014157198245,
87
+ "learning_rate": 1.874389392882066e-05,
88
+ "loss": 1.1121,
89
+ "mean_token_accuracy": 0.7314216181635856,
90
+ "num_tokens": 46922984.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.06974108621741784,
95
+ "grad_norm": 0.5984554239172547,
96
+ "learning_rate": 1.8604326587578507e-05,
97
+ "loss": 1.0812,
98
+ "mean_token_accuracy": 0.7361564762890339,
99
+ "num_tokens": 52128664.0,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 0.07671519483915962,
104
+ "grad_norm": 0.5158800068571207,
105
+ "learning_rate": 1.846475924633636e-05,
106
+ "loss": 1.084,
107
+ "mean_token_accuracy": 0.7369537271559239,
108
+ "num_tokens": 57329052.0,
109
+ "step": 110
110
+ },
111
+ {
112
+ "epoch": 0.0836893034609014,
113
+ "grad_norm": 0.5466460453672396,
114
+ "learning_rate": 1.8325191905094207e-05,
115
+ "loss": 1.0401,
116
+ "mean_token_accuracy": 0.7448922723531723,
117
+ "num_tokens": 62530353.0,
118
+ "step": 120
119
+ },
120
+ {
121
+ "epoch": 0.09066341208264318,
122
+ "grad_norm": 0.4523805154616186,
123
+ "learning_rate": 1.818562456385206e-05,
124
+ "loss": 1.0479,
125
+ "mean_token_accuracy": 0.7421278424561024,
126
+ "num_tokens": 67746318.0,
127
+ "step": 130
128
+ },
129
+ {
130
+ "epoch": 0.09763752070438497,
131
+ "grad_norm": 0.44171484182788284,
132
+ "learning_rate": 1.804605722260991e-05,
133
+ "loss": 1.0515,
134
+ "mean_token_accuracy": 0.7407021768391132,
135
+ "num_tokens": 72957240.0,
136
+ "step": 140
137
+ },
138
+ {
139
+ "epoch": 0.10461162932612675,
140
+ "grad_norm": 0.4695261678338159,
141
+ "learning_rate": 1.7906489881367762e-05,
142
+ "loss": 1.0201,
143
+ "mean_token_accuracy": 0.7466249123215676,
144
+ "num_tokens": 78191957.0,
145
+ "step": 150
146
+ },
147
+ {
148
+ "epoch": 0.11158573794786854,
149
+ "grad_norm": 0.42807730939307287,
150
+ "learning_rate": 1.7766922540125613e-05,
151
+ "loss": 1.0526,
152
+ "mean_token_accuracy": 0.7383826054632664,
153
+ "num_tokens": 83423253.0,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.11855984656961033,
158
+ "grad_norm": 0.38297451440622815,
159
+ "learning_rate": 1.762735519888346e-05,
160
+ "loss": 1.0088,
161
+ "mean_token_accuracy": 0.7492758467793464,
162
+ "num_tokens": 88653510.0,
163
+ "step": 170
164
+ },
165
+ {
166
+ "epoch": 0.1255339551913521,
167
+ "grad_norm": 0.47141895869579187,
168
+ "learning_rate": 1.7487787857641313e-05,
169
+ "loss": 1.0584,
170
+ "mean_token_accuracy": 0.739219581335783,
171
+ "num_tokens": 93867208.0,
172
+ "step": 180
173
+ },
174
+ {
175
+ "epoch": 0.13250806381309388,
176
+ "grad_norm": 0.5306783011512451,
177
+ "learning_rate": 1.7348220516399165e-05,
178
+ "loss": 1.0047,
179
+ "mean_token_accuracy": 0.7498140767216682,
180
+ "num_tokens": 99086055.0,
181
+ "step": 190
182
+ },
183
+ {
184
+ "epoch": 0.13948217243483568,
185
+ "grad_norm": 0.5231000235057512,
186
+ "learning_rate": 1.7208653175157016e-05,
187
+ "loss": 1.0079,
188
+ "mean_token_accuracy": 0.7487668044865131,
189
+ "num_tokens": 104304860.0,
190
+ "step": 200
191
+ },
192
+ {
193
+ "epoch": 0.14645628105657746,
194
+ "grad_norm": 0.41187666378026727,
195
+ "learning_rate": 1.7069085833914865e-05,
196
+ "loss": 0.9988,
197
+ "mean_token_accuracy": 0.7512342013418675,
198
+ "num_tokens": 109543647.0,
199
+ "step": 210
200
+ },
201
+ {
202
+ "epoch": 0.15343038967831923,
203
+ "grad_norm": 0.40403508141770766,
204
+ "learning_rate": 1.6929518492672716e-05,
205
+ "loss": 1.0165,
206
+ "mean_token_accuracy": 0.7470112279057503,
207
+ "num_tokens": 114752792.0,
208
+ "step": 220
209
+ },
210
+ {
211
+ "epoch": 0.160404498300061,
212
+ "grad_norm": 0.5754717498002909,
213
+ "learning_rate": 1.6789951151430564e-05,
214
+ "loss": 1.0105,
215
+ "mean_token_accuracy": 0.7488324768841267,
216
+ "num_tokens": 119967121.0,
217
+ "step": 230
218
+ },
219
+ {
220
+ "epoch": 0.1673786069218028,
221
+ "grad_norm": 0.44364322678004675,
222
+ "learning_rate": 1.6650383810188416e-05,
223
+ "loss": 1.0071,
224
+ "mean_token_accuracy": 0.7490420803427696,
225
+ "num_tokens": 125182870.0,
226
+ "step": 240
227
+ },
228
+ {
229
+ "epoch": 0.1743527155435446,
230
+ "grad_norm": 0.575304251563461,
231
+ "learning_rate": 1.6510816468946267e-05,
232
+ "loss": 0.9857,
233
+ "mean_token_accuracy": 0.7528010249137879,
234
+ "num_tokens": 130406619.0,
235
+ "step": 250
236
+ },
237
+ {
238
+ "epoch": 0.18132682416528637,
239
+ "grad_norm": 0.540462423532347,
240
+ "learning_rate": 1.637124912770412e-05,
241
+ "loss": 1.0162,
242
+ "mean_token_accuracy": 0.7485347926616669,
243
+ "num_tokens": 135604427.0,
244
+ "step": 260
245
+ },
246
+ {
247
+ "epoch": 0.18830093278702817,
248
+ "grad_norm": 0.40426885769834775,
249
+ "learning_rate": 1.623168178646197e-05,
250
+ "loss": 1.0118,
251
+ "mean_token_accuracy": 0.7474067293107509,
252
+ "num_tokens": 140824528.0,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.19527504140876994,
257
+ "grad_norm": 0.42837116867130043,
258
+ "learning_rate": 1.609211444521982e-05,
259
+ "loss": 1.0124,
260
+ "mean_token_accuracy": 0.7487675935029984,
261
+ "num_tokens": 146044561.0,
262
+ "step": 280
263
+ },
264
+ {
265
+ "epoch": 0.20224915003051172,
266
+ "grad_norm": 0.3870406412940893,
267
+ "learning_rate": 1.595254710397767e-05,
268
+ "loss": 1.0081,
269
+ "mean_token_accuracy": 0.7484398439526558,
270
+ "num_tokens": 151253975.0,
271
+ "step": 290
272
+ },
273
+ {
274
+ "epoch": 0.2092232586522535,
275
+ "grad_norm": 0.40096332476149293,
276
+ "learning_rate": 1.5812979762735522e-05,
277
+ "loss": 1.005,
278
+ "mean_token_accuracy": 0.7493982173502445,
279
+ "num_tokens": 156467940.0,
280
+ "step": 300
281
+ },
282
+ {
283
+ "epoch": 0.2161973672739953,
284
+ "grad_norm": 0.43422479409284837,
285
+ "learning_rate": 1.5673412421493374e-05,
286
+ "loss": 0.983,
287
+ "mean_token_accuracy": 0.754252764582634,
288
+ "num_tokens": 161684128.0,
289
+ "step": 310
290
+ },
291
+ {
292
+ "epoch": 0.22317147589573708,
293
+ "grad_norm": 0.4553501534404972,
294
+ "learning_rate": 1.5533845080251222e-05,
295
+ "loss": 0.971,
296
+ "mean_token_accuracy": 0.7576074823737144,
297
+ "num_tokens": 166894096.0,
298
+ "step": 320
299
+ },
300
+ {
301
+ "epoch": 0.23014558451747885,
302
+ "grad_norm": 0.42454678226314013,
303
+ "learning_rate": 1.5394277739009073e-05,
304
+ "loss": 0.9624,
305
+ "mean_token_accuracy": 0.7599432460963726,
306
+ "num_tokens": 172113175.0,
307
+ "step": 330
308
+ },
309
+ {
310
+ "epoch": 0.23711969313922066,
311
+ "grad_norm": 0.547419113500354,
312
+ "learning_rate": 1.5254710397766923e-05,
313
+ "loss": 0.9682,
314
+ "mean_token_accuracy": 0.7578005746006966,
315
+ "num_tokens": 177313248.0,
316
+ "step": 340
317
+ },
318
+ {
319
+ "epoch": 0.24409380176096243,
320
+ "grad_norm": 0.47403825372419195,
321
+ "learning_rate": 1.5115143056524775e-05,
322
+ "loss": 0.9806,
323
+ "mean_token_accuracy": 0.7555795937776566,
324
+ "num_tokens": 182528605.0,
325
+ "step": 350
326
+ },
327
+ {
328
+ "epoch": 0.2510679103827042,
329
+ "grad_norm": 0.4028934011079142,
330
+ "learning_rate": 1.4975575715282625e-05,
331
+ "loss": 1.0358,
332
+ "mean_token_accuracy": 0.7439993605017662,
333
+ "num_tokens": 187767205.0,
334
+ "step": 360
335
+ },
336
+ {
337
+ "epoch": 0.258042019004446,
338
+ "grad_norm": 0.45019108320584944,
339
+ "learning_rate": 1.4836008374040476e-05,
340
+ "loss": 0.9743,
341
+ "mean_token_accuracy": 0.7563955925405026,
342
+ "num_tokens": 192969333.0,
343
+ "step": 370
344
+ },
345
+ {
346
+ "epoch": 0.26501612762618776,
347
+ "grad_norm": 0.4810447076345156,
348
+ "learning_rate": 1.4696441032798325e-05,
349
+ "loss": 0.9641,
350
+ "mean_token_accuracy": 0.7581501506268978,
351
+ "num_tokens": 198195875.0,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 0.27199023624792956,
356
+ "grad_norm": 0.42425264741491425,
357
+ "learning_rate": 1.4556873691556178e-05,
358
+ "loss": 0.9586,
359
+ "mean_token_accuracy": 0.7610778979957104,
360
+ "num_tokens": 203400642.0,
361
+ "step": 390
362
+ },
363
+ {
364
+ "epoch": 0.27896434486967137,
365
+ "grad_norm": 0.3916573248365437,
366
+ "learning_rate": 1.441730635031403e-05,
367
+ "loss": 0.9394,
368
+ "mean_token_accuracy": 0.7629689492285252,
369
+ "num_tokens": 208609744.0,
370
+ "step": 400
371
+ },
372
+ {
373
+ "epoch": 0.2859384534914131,
374
+ "grad_norm": 0.43275995405560674,
375
+ "learning_rate": 1.4277739009071878e-05,
376
+ "loss": 0.9876,
377
+ "mean_token_accuracy": 0.7536638893187046,
378
+ "num_tokens": 213824480.0,
379
+ "step": 410
380
+ },
381
+ {
382
+ "epoch": 0.2929125621131549,
383
+ "grad_norm": 0.47149891335086397,
384
+ "learning_rate": 1.413817166782973e-05,
385
+ "loss": 0.9686,
386
+ "mean_token_accuracy": 0.7578607179224491,
387
+ "num_tokens": 219031061.0,
388
+ "step": 420
389
+ },
390
+ {
391
+ "epoch": 0.2998866707348967,
392
+ "grad_norm": 0.4186792076955296,
393
+ "learning_rate": 1.3998604326587579e-05,
394
+ "loss": 0.9603,
395
+ "mean_token_accuracy": 0.7595906279981136,
396
+ "num_tokens": 224267005.0,
397
+ "step": 430
398
+ },
399
+ {
400
+ "epoch": 0.30686077935663847,
401
+ "grad_norm": 0.3930524639428221,
402
+ "learning_rate": 1.385903698534543e-05,
403
+ "loss": 0.9293,
404
+ "mean_token_accuracy": 0.7671543344855308,
405
+ "num_tokens": 229451762.0,
406
+ "step": 440
407
+ },
408
+ {
409
+ "epoch": 0.3138348879783803,
410
+ "grad_norm": 0.4263237402010877,
411
+ "learning_rate": 1.371946964410328e-05,
412
+ "loss": 0.9482,
413
+ "mean_token_accuracy": 0.7618237361311913,
414
+ "num_tokens": 234670062.0,
415
+ "step": 450
416
+ },
417
+ {
418
+ "epoch": 0.320808996600122,
419
+ "grad_norm": 0.39317137657310636,
420
+ "learning_rate": 1.3579902302861132e-05,
421
+ "loss": 0.9744,
422
+ "mean_token_accuracy": 0.7560546509921551,
423
+ "num_tokens": 239910719.0,
424
+ "step": 460
425
+ },
426
+ {
427
+ "epoch": 0.3277831052218638,
428
+ "grad_norm": 0.44671274863611427,
429
+ "learning_rate": 1.3440334961618982e-05,
430
+ "loss": 0.976,
431
+ "mean_token_accuracy": 0.755743158608675,
432
+ "num_tokens": 245131689.0,
433
+ "step": 470
434
+ },
435
+ {
436
+ "epoch": 0.3347572138436056,
437
+ "grad_norm": 0.4064941793905646,
438
+ "learning_rate": 1.3300767620376834e-05,
439
+ "loss": 0.9555,
440
+ "mean_token_accuracy": 0.7598547391593456,
441
+ "num_tokens": 250355253.0,
442
+ "step": 480
443
+ },
444
+ {
445
+ "epoch": 0.3417313224653474,
446
+ "grad_norm": 0.3990088896277884,
447
+ "learning_rate": 1.3161200279134683e-05,
448
+ "loss": 0.9767,
449
+ "mean_token_accuracy": 0.7549555778503418,
450
+ "num_tokens": 255560500.0,
451
+ "step": 490
452
+ },
453
+ {
454
+ "epoch": 0.3487054310870892,
455
+ "grad_norm": 0.3880542485977783,
456
+ "learning_rate": 1.3021632937892535e-05,
457
+ "loss": 0.9484,
458
+ "mean_token_accuracy": 0.7622528865933418,
459
+ "num_tokens": 260803106.0,
460
+ "step": 500
461
+ },
462
+ {
463
+ "epoch": 0.355679539708831,
464
+ "grad_norm": 0.3855711062745918,
465
+ "learning_rate": 1.2882065596650383e-05,
466
+ "loss": 0.9315,
467
+ "mean_token_accuracy": 0.7644780240952969,
468
+ "num_tokens": 266019143.0,
469
+ "step": 510
470
+ },
471
+ {
472
+ "epoch": 0.36265364833057273,
473
+ "grad_norm": 0.38925837028933397,
474
+ "learning_rate": 1.2742498255408235e-05,
475
+ "loss": 0.9793,
476
+ "mean_token_accuracy": 0.7551330395042897,
477
+ "num_tokens": 271236664.0,
478
+ "step": 520
479
+ },
480
+ {
481
+ "epoch": 0.36962775695231453,
482
+ "grad_norm": 0.42453173660102156,
483
+ "learning_rate": 1.2602930914166086e-05,
484
+ "loss": 1.0037,
485
+ "mean_token_accuracy": 0.7494762003421783,
486
+ "num_tokens": 276445423.0,
487
+ "step": 530
488
+ },
489
+ {
490
+ "epoch": 0.37660186557405634,
491
+ "grad_norm": 0.38154300536145963,
492
+ "learning_rate": 1.2463363572923936e-05,
493
+ "loss": 0.9485,
494
+ "mean_token_accuracy": 0.7603807933628559,
495
+ "num_tokens": 281665378.0,
496
+ "step": 540
497
+ },
498
+ {
499
+ "epoch": 0.3835759741957981,
500
+ "grad_norm": 0.4155724873927858,
501
+ "learning_rate": 1.2323796231681788e-05,
502
+ "loss": 0.9913,
503
+ "mean_token_accuracy": 0.7537875458598137,
504
+ "num_tokens": 286881114.0,
505
+ "step": 550
506
+ },
507
+ {
508
+ "epoch": 0.3905500828175399,
509
+ "grad_norm": 0.39834688216073105,
510
+ "learning_rate": 1.2184228890439638e-05,
511
+ "loss": 0.9323,
512
+ "mean_token_accuracy": 0.765583547949791,
513
+ "num_tokens": 292103861.0,
514
+ "step": 560
515
+ },
516
+ {
517
+ "epoch": 0.3975241914392817,
518
+ "grad_norm": 0.38288150639581625,
519
+ "learning_rate": 1.204466154919749e-05,
520
+ "loss": 0.9415,
521
+ "mean_token_accuracy": 0.7633400082588195,
522
+ "num_tokens": 297311777.0,
523
+ "step": 570
524
+ },
525
+ {
526
+ "epoch": 0.40449830006102344,
527
+ "grad_norm": 0.8357789690484667,
528
+ "learning_rate": 1.190509420795534e-05,
529
+ "loss": 0.9587,
530
+ "mean_token_accuracy": 0.7596958331763745,
531
+ "num_tokens": 302530687.0,
532
+ "step": 580
533
+ },
534
+ {
535
+ "epoch": 0.41147240868276524,
536
+ "grad_norm": 0.38083159493558805,
537
+ "learning_rate": 1.176552686671319e-05,
538
+ "loss": 0.9404,
539
+ "mean_token_accuracy": 0.7626550003886223,
540
+ "num_tokens": 307748980.0,
541
+ "step": 590
542
+ },
543
+ {
544
+ "epoch": 0.418446517304507,
545
+ "grad_norm": 0.4227740609208552,
546
+ "learning_rate": 1.162595952547104e-05,
547
+ "loss": 0.9733,
548
+ "mean_token_accuracy": 0.7604668110609054,
549
+ "num_tokens": 312943051.0,
550
+ "step": 600
551
+ },
552
+ {
553
+ "epoch": 0.4254206259262488,
554
+ "grad_norm": 0.38772192194201555,
555
+ "learning_rate": 1.1486392184228892e-05,
556
+ "loss": 0.9709,
557
+ "mean_token_accuracy": 0.7564498282968998,
558
+ "num_tokens": 318151563.0,
559
+ "step": 610
560
+ },
561
+ {
562
+ "epoch": 0.4323947345479906,
563
+ "grad_norm": 0.36959575861492927,
564
+ "learning_rate": 1.134682484298674e-05,
565
+ "loss": 0.9266,
566
+ "mean_token_accuracy": 0.7665658846497536,
567
+ "num_tokens": 323348450.0,
568
+ "step": 620
569
+ },
570
+ {
571
+ "epoch": 0.43936884316973235,
572
+ "grad_norm": 0.4601441516747318,
573
+ "learning_rate": 1.1207257501744592e-05,
574
+ "loss": 0.9654,
575
+ "mean_token_accuracy": 0.759503035992384,
576
+ "num_tokens": 328561019.0,
577
+ "step": 630
578
+ },
579
+ {
580
+ "epoch": 0.44634295179147415,
581
+ "grad_norm": 0.38038477949304556,
582
+ "learning_rate": 1.1067690160502442e-05,
583
+ "loss": 0.9162,
584
+ "mean_token_accuracy": 0.7693545915186405,
585
+ "num_tokens": 333779716.0,
586
+ "step": 640
587
+ },
588
+ {
589
+ "epoch": 0.45331706041321596,
590
+ "grad_norm": 0.42040034344402993,
591
+ "learning_rate": 1.0928122819260294e-05,
592
+ "loss": 0.963,
593
+ "mean_token_accuracy": 0.7572891287505626,
594
+ "num_tokens": 338982085.0,
595
+ "step": 650
596
+ },
597
+ {
598
+ "epoch": 0.4602911690349577,
599
+ "grad_norm": 0.3812244765252493,
600
+ "learning_rate": 1.0788555478018145e-05,
601
+ "loss": 0.9365,
602
+ "mean_token_accuracy": 0.7642278485000134,
603
+ "num_tokens": 344213653.0,
604
+ "step": 660
605
+ },
606
+ {
607
+ "epoch": 0.4672652776566995,
608
+ "grad_norm": 0.4087823035529752,
609
+ "learning_rate": 1.0648988136775995e-05,
610
+ "loss": 0.9423,
611
+ "mean_token_accuracy": 0.7617657199501991,
612
+ "num_tokens": 349404388.0,
613
+ "step": 670
614
+ },
615
+ {
616
+ "epoch": 0.4742393862784413,
617
+ "grad_norm": 0.39602129162421507,
618
+ "learning_rate": 1.0509420795533847e-05,
619
+ "loss": 0.9128,
620
+ "mean_token_accuracy": 0.7687453046441078,
621
+ "num_tokens": 354621032.0,
622
+ "step": 680
623
+ },
624
+ {
625
+ "epoch": 0.48121349490018306,
626
+ "grad_norm": 0.38992457421248217,
627
+ "learning_rate": 1.0369853454291696e-05,
628
+ "loss": 0.9316,
629
+ "mean_token_accuracy": 0.7646553680300713,
630
+ "num_tokens": 359855873.0,
631
+ "step": 690
632
+ },
633
+ {
634
+ "epoch": 0.48818760352192486,
635
+ "grad_norm": 0.44520026271665664,
636
+ "learning_rate": 1.0230286113049548e-05,
637
+ "loss": 0.9536,
638
+ "mean_token_accuracy": 0.7614728428423405,
639
+ "num_tokens": 365064715.0,
640
+ "step": 700
641
+ },
642
+ {
643
+ "epoch": 0.4951617121436666,
644
+ "grad_norm": 0.4661253738133965,
645
+ "learning_rate": 1.0090718771807398e-05,
646
+ "loss": 0.9412,
647
+ "mean_token_accuracy": 0.762547479569912,
648
+ "num_tokens": 370281367.0,
649
+ "step": 710
650
+ },
651
+ {
652
+ "epoch": 0.5021358207654084,
653
+ "grad_norm": 0.39504053229183933,
654
+ "learning_rate": 9.95115143056525e-06,
655
+ "loss": 0.9367,
656
+ "mean_token_accuracy": 0.7646071046590805,
657
+ "num_tokens": 375497708.0,
658
+ "step": 720
659
+ },
660
+ {
661
+ "epoch": 0.5091099293871502,
662
+ "grad_norm": 0.3824439070570653,
663
+ "learning_rate": 9.8115840893231e-06,
664
+ "loss": 0.9172,
665
+ "mean_token_accuracy": 0.7680047519505024,
666
+ "num_tokens": 380718542.0,
667
+ "step": 730
668
+ },
669
+ {
670
+ "epoch": 0.516084038008892,
671
+ "grad_norm": 0.37079090302059575,
672
+ "learning_rate": 9.67201674808095e-06,
673
+ "loss": 0.9314,
674
+ "mean_token_accuracy": 0.7650148421525955,
675
+ "num_tokens": 385921280.0,
676
+ "step": 740
677
+ },
678
+ {
679
+ "epoch": 0.5230581466306338,
680
+ "grad_norm": 0.4019218041970946,
681
+ "learning_rate": 9.532449406838801e-06,
682
+ "loss": 0.9287,
683
+ "mean_token_accuracy": 0.7644618228077888,
684
+ "num_tokens": 391132061.0,
685
+ "step": 750
686
+ },
687
+ {
688
+ "epoch": 0.5300322552523755,
689
+ "grad_norm": 0.38251130780001885,
690
+ "learning_rate": 9.39288206559665e-06,
691
+ "loss": 0.9734,
692
+ "mean_token_accuracy": 0.7571332968771458,
693
+ "num_tokens": 396343156.0,
694
+ "step": 760
695
+ },
696
+ {
697
+ "epoch": 0.5370063638741174,
698
+ "grad_norm": 0.37292249837152786,
699
+ "learning_rate": 9.253314724354502e-06,
700
+ "loss": 0.9153,
701
+ "mean_token_accuracy": 0.7681960433721542,
702
+ "num_tokens": 401546159.0,
703
+ "step": 770
704
+ },
705
+ {
706
+ "epoch": 0.5439804724958591,
707
+ "grad_norm": 0.3348977108675755,
708
+ "learning_rate": 9.113747383112352e-06,
709
+ "loss": 0.93,
710
+ "mean_token_accuracy": 0.764988923817873,
711
+ "num_tokens": 406768446.0,
712
+ "step": 780
713
+ },
714
+ {
715
+ "epoch": 0.5509545811176009,
716
+ "grad_norm": 0.39734318659726225,
717
+ "learning_rate": 8.974180041870202e-06,
718
+ "loss": 0.9059,
719
+ "mean_token_accuracy": 0.7691093161702156,
720
+ "num_tokens": 412002743.0,
721
+ "step": 790
722
+ },
723
+ {
724
+ "epoch": 0.5579286897393427,
725
+ "grad_norm": 0.39878914328283566,
726
+ "learning_rate": 8.834612700628054e-06,
727
+ "loss": 0.909,
728
+ "mean_token_accuracy": 0.7693131245672703,
729
+ "num_tokens": 417237823.0,
730
+ "step": 800
731
+ },
732
+ {
733
+ "epoch": 0.5649027983610845,
734
+ "grad_norm": 0.4048892126548644,
735
+ "learning_rate": 8.695045359385904e-06,
736
+ "loss": 0.9087,
737
+ "mean_token_accuracy": 0.7717426352202892,
738
+ "num_tokens": 422465844.0,
739
+ "step": 810
740
+ },
741
+ {
742
+ "epoch": 0.5718769069828262,
743
+ "grad_norm": 0.38326426645828254,
744
+ "learning_rate": 8.555478018143755e-06,
745
+ "loss": 0.9421,
746
+ "mean_token_accuracy": 0.7620919689536094,
747
+ "num_tokens": 427688135.0,
748
+ "step": 820
749
+ },
750
+ {
751
+ "epoch": 0.5788510156045681,
752
+ "grad_norm": 0.3637272171343389,
753
+ "learning_rate": 8.415910676901605e-06,
754
+ "loss": 0.9263,
755
+ "mean_token_accuracy": 0.7648625656962394,
756
+ "num_tokens": 432895098.0,
757
+ "step": 830
758
+ },
759
+ {
760
+ "epoch": 0.5858251242263098,
761
+ "grad_norm": 0.40344903213755196,
762
+ "learning_rate": 8.276343335659457e-06,
763
+ "loss": 0.9175,
764
+ "mean_token_accuracy": 0.7687754184007645,
765
+ "num_tokens": 438117947.0,
766
+ "step": 840
767
+ },
768
+ {
769
+ "epoch": 0.5927992328480516,
770
+ "grad_norm": 0.3983260452796964,
771
+ "learning_rate": 8.136775994417308e-06,
772
+ "loss": 0.9257,
773
+ "mean_token_accuracy": 0.7665271393954753,
774
+ "num_tokens": 443327672.0,
775
+ "step": 850
776
+ },
777
+ {
778
+ "epoch": 0.5997733414697934,
779
+ "grad_norm": 0.3792139090417304,
780
+ "learning_rate": 7.997208653175158e-06,
781
+ "loss": 0.9115,
782
+ "mean_token_accuracy": 0.7701104514300823,
783
+ "num_tokens": 448544202.0,
784
+ "step": 860
785
+ },
786
+ {
787
+ "epoch": 0.6067474500915352,
788
+ "grad_norm": 0.39233894106852285,
789
+ "learning_rate": 7.857641311933008e-06,
790
+ "loss": 0.9207,
791
+ "mean_token_accuracy": 0.766925735771656,
792
+ "num_tokens": 453754144.0,
793
+ "step": 870
794
+ },
795
+ {
796
+ "epoch": 0.6137215587132769,
797
+ "grad_norm": 0.37099566656125776,
798
+ "learning_rate": 7.71807397069086e-06,
799
+ "loss": 0.9368,
800
+ "mean_token_accuracy": 0.7654783807694912,
801
+ "num_tokens": 458961169.0,
802
+ "step": 880
803
+ },
804
+ {
805
+ "epoch": 0.6206956673350188,
806
+ "grad_norm": 0.36150419665277095,
807
+ "learning_rate": 7.5785066294487095e-06,
808
+ "loss": 0.9564,
809
+ "mean_token_accuracy": 0.7576717928051948,
810
+ "num_tokens": 464186943.0,
811
+ "step": 890
812
+ },
813
+ {
814
+ "epoch": 0.6276697759567605,
815
+ "grad_norm": 0.39167229335075915,
816
+ "learning_rate": 7.43893928820656e-06,
817
+ "loss": 0.8957,
818
+ "mean_token_accuracy": 0.7732305780053139,
819
+ "num_tokens": 469405129.0,
820
+ "step": 900
821
+ },
822
+ {
823
+ "epoch": 0.6346438845785023,
824
+ "grad_norm": 0.37702669554422047,
825
+ "learning_rate": 7.299371946964411e-06,
826
+ "loss": 0.929,
827
+ "mean_token_accuracy": 0.7668366506695747,
828
+ "num_tokens": 474581139.0,
829
+ "step": 910
830
+ },
831
+ {
832
+ "epoch": 0.641617993200244,
833
+ "grad_norm": 0.4393186375332163,
834
+ "learning_rate": 7.159804605722262e-06,
835
+ "loss": 0.9044,
836
+ "mean_token_accuracy": 0.769436652213335,
837
+ "num_tokens": 479815321.0,
838
+ "step": 920
839
+ },
840
+ {
841
+ "epoch": 0.6485921018219859,
842
+ "grad_norm": 0.40114138101341246,
843
+ "learning_rate": 7.020237264480112e-06,
844
+ "loss": 0.899,
845
+ "mean_token_accuracy": 0.771680898219347,
846
+ "num_tokens": 485007606.0,
847
+ "step": 930
848
+ },
849
+ {
850
+ "epoch": 0.6555662104437276,
851
+ "grad_norm": 0.39032214623021994,
852
+ "learning_rate": 6.880669923237962e-06,
853
+ "loss": 0.9029,
854
+ "mean_token_accuracy": 0.7706406064331531,
855
+ "num_tokens": 490184421.0,
856
+ "step": 940
857
+ },
858
+ {
859
+ "epoch": 0.6625403190654694,
860
+ "grad_norm": 0.3731614616939349,
861
+ "learning_rate": 6.741102581995813e-06,
862
+ "loss": 0.9154,
863
+ "mean_token_accuracy": 0.7689259447157383,
864
+ "num_tokens": 495403828.0,
865
+ "step": 950
866
+ },
867
+ {
868
+ "epoch": 0.6695144276872113,
869
+ "grad_norm": 0.3667066439568391,
870
+ "learning_rate": 6.601535240753664e-06,
871
+ "loss": 0.9009,
872
+ "mean_token_accuracy": 0.7717468045651913,
873
+ "num_tokens": 500628969.0,
874
+ "step": 960
875
+ },
876
+ {
877
+ "epoch": 0.676488536308953,
878
+ "grad_norm": 0.40153725283613484,
879
+ "learning_rate": 6.461967899511515e-06,
880
+ "loss": 0.9073,
881
+ "mean_token_accuracy": 0.7704323403537273,
882
+ "num_tokens": 505849831.0,
883
+ "step": 970
884
+ },
885
+ {
886
+ "epoch": 0.6834626449306948,
887
+ "grad_norm": 0.3583835882216077,
888
+ "learning_rate": 6.322400558269366e-06,
889
+ "loss": 0.898,
890
+ "mean_token_accuracy": 0.7703130587935447,
891
+ "num_tokens": 511070685.0,
892
+ "step": 980
893
+ },
894
+ {
895
+ "epoch": 0.6904367535524366,
896
+ "grad_norm": 0.37360760983757,
897
+ "learning_rate": 6.182833217027217e-06,
898
+ "loss": 0.9048,
899
+ "mean_token_accuracy": 0.7708475425839424,
900
+ "num_tokens": 516282298.0,
901
+ "step": 990
902
+ },
903
+ {
904
+ "epoch": 0.6974108621741784,
905
+ "grad_norm": 0.4052267955342611,
906
+ "learning_rate": 6.043265875785067e-06,
907
+ "loss": 0.9141,
908
+ "mean_token_accuracy": 0.7700764268636704,
909
+ "num_tokens": 521506004.0,
910
+ "step": 1000
911
+ },
912
+ {
913
+ "epoch": 0.7043849707959201,
914
+ "grad_norm": 0.37476260513580917,
915
+ "learning_rate": 5.9036985345429175e-06,
916
+ "loss": 0.8799,
917
+ "mean_token_accuracy": 0.7757025450468064,
918
+ "num_tokens": 526704196.0,
919
+ "step": 1010
920
+ },
921
+ {
922
+ "epoch": 0.711359079417662,
923
+ "grad_norm": 0.34720450755727333,
924
+ "learning_rate": 5.764131193300768e-06,
925
+ "loss": 0.9243,
926
+ "mean_token_accuracy": 0.7654957190155983,
927
+ "num_tokens": 531926386.0,
928
+ "step": 1020
929
+ },
930
+ {
931
+ "epoch": 0.7183331880394037,
932
+ "grad_norm": 0.36577186995632954,
933
+ "learning_rate": 5.624563852058619e-06,
934
+ "loss": 0.9188,
935
+ "mean_token_accuracy": 0.7666943095624447,
936
+ "num_tokens": 537151868.0,
937
+ "step": 1030
938
+ },
939
+ {
940
+ "epoch": 0.7253072966611455,
941
+ "grad_norm": 0.36730233622647385,
942
+ "learning_rate": 5.48499651081647e-06,
943
+ "loss": 0.9138,
944
+ "mean_token_accuracy": 0.769872335344553,
945
+ "num_tokens": 542378763.0,
946
+ "step": 1040
947
+ },
948
+ {
949
+ "epoch": 0.7322814052828873,
950
+ "grad_norm": 0.3591564207823688,
951
+ "learning_rate": 5.34542916957432e-06,
952
+ "loss": 0.9286,
953
+ "mean_token_accuracy": 0.7657423540949821,
954
+ "num_tokens": 547599925.0,
955
+ "step": 1050
956
+ },
957
+ {
958
+ "epoch": 0.7392555139046291,
959
+ "grad_norm": 0.42769074312263,
960
+ "learning_rate": 5.20586182833217e-06,
961
+ "loss": 0.9483,
962
+ "mean_token_accuracy": 0.7623199932277203,
963
+ "num_tokens": 552820542.0,
964
+ "step": 1060
965
+ },
966
+ {
967
+ "epoch": 0.7462296225263708,
968
+ "grad_norm": 0.3463173491179666,
969
+ "learning_rate": 5.066294487090021e-06,
970
+ "loss": 0.903,
971
+ "mean_token_accuracy": 0.7709932036697864,
972
+ "num_tokens": 558048759.0,
973
+ "step": 1070
974
+ },
975
+ {
976
+ "epoch": 0.7532037311481127,
977
+ "grad_norm": 0.3614363983839549,
978
+ "learning_rate": 4.926727145847872e-06,
979
+ "loss": 0.9192,
980
+ "mean_token_accuracy": 0.7681723035871982,
981
+ "num_tokens": 563270481.0,
982
+ "step": 1080
983
+ },
984
+ {
985
+ "epoch": 0.7601778397698544,
986
+ "grad_norm": 0.35658625312294967,
987
+ "learning_rate": 4.7871598046057225e-06,
988
+ "loss": 0.8802,
989
+ "mean_token_accuracy": 0.7759811513125896,
990
+ "num_tokens": 568486595.0,
991
+ "step": 1090
992
+ },
993
+ {
994
+ "epoch": 0.7671519483915962,
995
+ "grad_norm": 0.3698188043703118,
996
+ "learning_rate": 4.647592463363573e-06,
997
+ "loss": 0.9413,
998
+ "mean_token_accuracy": 0.7625458896160126,
999
+ "num_tokens": 573702676.0,
1000
+ "step": 1100
1001
+ },
1002
+ {
1003
+ "epoch": 0.774126057013338,
1004
+ "grad_norm": 0.3725000980409906,
1005
+ "learning_rate": 4.508025122121424e-06,
1006
+ "loss": 0.9044,
1007
+ "mean_token_accuracy": 0.7708488263189792,
1008
+ "num_tokens": 578919895.0,
1009
+ "step": 1110
1010
+ },
1011
+ {
1012
+ "epoch": 0.7811001656350798,
1013
+ "grad_norm": 0.3713961702057732,
1014
+ "learning_rate": 4.368457780879275e-06,
1015
+ "loss": 0.8941,
1016
+ "mean_token_accuracy": 0.7728025235235692,
1017
+ "num_tokens": 584131374.0,
1018
+ "step": 1120
1019
+ },
1020
+ {
1021
+ "epoch": 0.7880742742568215,
1022
+ "grad_norm": 0.36796791981480936,
1023
+ "learning_rate": 4.2288904396371255e-06,
1024
+ "loss": 0.9416,
1025
+ "mean_token_accuracy": 0.7628413528203964,
1026
+ "num_tokens": 589354541.0,
1027
+ "step": 1130
1028
+ },
1029
+ {
1030
+ "epoch": 0.7950483828785634,
1031
+ "grad_norm": 0.48228825672429815,
1032
+ "learning_rate": 4.089323098394976e-06,
1033
+ "loss": 0.8929,
1034
+ "mean_token_accuracy": 0.7732940003275871,
1035
+ "num_tokens": 594582112.0,
1036
+ "step": 1140
1037
+ },
1038
+ {
1039
+ "epoch": 0.8020224915003051,
1040
+ "grad_norm": 0.3277484950538356,
1041
+ "learning_rate": 3.949755757152827e-06,
1042
+ "loss": 0.9238,
1043
+ "mean_token_accuracy": 0.7680127613246441,
1044
+ "num_tokens": 599806404.0,
1045
+ "step": 1150
1046
+ },
1047
+ {
1048
+ "epoch": 0.8089966001220469,
1049
+ "grad_norm": 0.36127760597674785,
1050
+ "learning_rate": 3.8101884159106773e-06,
1051
+ "loss": 0.91,
1052
+ "mean_token_accuracy": 0.76893250644207,
1053
+ "num_tokens": 604992709.0,
1054
+ "step": 1160
1055
+ },
1056
+ {
1057
+ "epoch": 0.8159707087437886,
1058
+ "grad_norm": 0.36088979794177145,
1059
+ "learning_rate": 3.6706210746685276e-06,
1060
+ "loss": 0.8928,
1061
+ "mean_token_accuracy": 0.7733190104365348,
1062
+ "num_tokens": 610196154.0,
1063
+ "step": 1170
1064
+ },
1065
+ {
1066
+ "epoch": 0.8229448173655305,
1067
+ "grad_norm": 0.39414875765092466,
1068
+ "learning_rate": 3.5310537334263783e-06,
1069
+ "loss": 0.8998,
1070
+ "mean_token_accuracy": 0.7706829600036145,
1071
+ "num_tokens": 615405599.0,
1072
+ "step": 1180
1073
+ },
1074
+ {
1075
+ "epoch": 0.8299189259872722,
1076
+ "grad_norm": 0.39339892470353705,
1077
+ "learning_rate": 3.391486392184229e-06,
1078
+ "loss": 0.9031,
1079
+ "mean_token_accuracy": 0.7702208802103996,
1080
+ "num_tokens": 620621769.0,
1081
+ "step": 1190
1082
+ },
1083
+ {
1084
+ "epoch": 0.836893034609014,
1085
+ "grad_norm": 0.34171474065298146,
1086
+ "learning_rate": 3.2519190509420802e-06,
1087
+ "loss": 0.9014,
1088
+ "mean_token_accuracy": 0.7729310475289821,
1089
+ "num_tokens": 625840042.0,
1090
+ "step": 1200
1091
+ },
1092
+ {
1093
+ "epoch": 0.8438671432307558,
1094
+ "grad_norm": 1.3656069317152455,
1095
+ "learning_rate": 3.1123517096999305e-06,
1096
+ "loss": 0.9056,
1097
+ "mean_token_accuracy": 0.7707111813127995,
1098
+ "num_tokens": 631065160.0,
1099
+ "step": 1210
1100
+ },
1101
+ {
1102
+ "epoch": 0.8508412518524976,
1103
+ "grad_norm": 0.3610318299233128,
1104
+ "learning_rate": 2.9727843684577813e-06,
1105
+ "loss": 0.9029,
1106
+ "mean_token_accuracy": 0.771676741540432,
1107
+ "num_tokens": 636286830.0,
1108
+ "step": 1220
1109
+ },
1110
+ {
1111
+ "epoch": 0.8578153604742393,
1112
+ "grad_norm": 0.34915832846441347,
1113
+ "learning_rate": 2.8332170272156316e-06,
1114
+ "loss": 0.8804,
1115
+ "mean_token_accuracy": 0.7761870890855789,
1116
+ "num_tokens": 641509618.0,
1117
+ "step": 1230
1118
+ },
1119
+ {
1120
+ "epoch": 0.8647894690959812,
1121
+ "grad_norm": 0.42520160431882614,
1122
+ "learning_rate": 2.6936496859734823e-06,
1123
+ "loss": 0.9411,
1124
+ "mean_token_accuracy": 0.7625840306282043,
1125
+ "num_tokens": 646733919.0,
1126
+ "step": 1240
1127
+ },
1128
+ {
1129
+ "epoch": 0.871763577717723,
1130
+ "grad_norm": 0.35874356507377264,
1131
+ "learning_rate": 2.554082344731333e-06,
1132
+ "loss": 0.9428,
1133
+ "mean_token_accuracy": 0.7641902238130569,
1134
+ "num_tokens": 651944741.0,
1135
+ "step": 1250
1136
+ },
1137
+ {
1138
+ "epoch": 0.8787376863394647,
1139
+ "grad_norm": 0.35766429136783195,
1140
+ "learning_rate": 2.414515003489184e-06,
1141
+ "loss": 0.9018,
1142
+ "mean_token_accuracy": 0.7712234206497669,
1143
+ "num_tokens": 657167434.0,
1144
+ "step": 1260
1145
+ },
1146
+ {
1147
+ "epoch": 0.8857117949612066,
1148
+ "grad_norm": 0.3578783545028257,
1149
+ "learning_rate": 2.274947662247034e-06,
1150
+ "loss": 0.9214,
1151
+ "mean_token_accuracy": 0.7683630496263504,
1152
+ "num_tokens": 662394410.0,
1153
+ "step": 1270
1154
+ },
1155
+ {
1156
+ "epoch": 0.8926859035829483,
1157
+ "grad_norm": 0.36365534475165295,
1158
+ "learning_rate": 2.1353803210048853e-06,
1159
+ "loss": 0.8924,
1160
+ "mean_token_accuracy": 0.7752385981380939,
1161
+ "num_tokens": 667590484.0,
1162
+ "step": 1280
1163
+ },
1164
+ {
1165
+ "epoch": 0.89966001220469,
1166
+ "grad_norm": 0.36248872627227785,
1167
+ "learning_rate": 1.9958129797627356e-06,
1168
+ "loss": 0.8909,
1169
+ "mean_token_accuracy": 0.774327552318573,
1170
+ "num_tokens": 672796932.0,
1171
+ "step": 1290
1172
+ },
1173
+ {
1174
+ "epoch": 0.9066341208264319,
1175
+ "grad_norm": 0.40177518253013667,
1176
+ "learning_rate": 1.8562456385205863e-06,
1177
+ "loss": 0.8995,
1178
+ "mean_token_accuracy": 0.772245715558529,
1179
+ "num_tokens": 678001091.0,
1180
+ "step": 1300
1181
+ },
1182
+ {
1183
+ "epoch": 0.9136082294481737,
1184
+ "grad_norm": 0.3770368776270654,
1185
+ "learning_rate": 1.716678297278437e-06,
1186
+ "loss": 0.9026,
1187
+ "mean_token_accuracy": 0.7712542794644832,
1188
+ "num_tokens": 683228770.0,
1189
+ "step": 1310
1190
+ },
1191
+ {
1192
+ "epoch": 0.9205823380699154,
1193
+ "grad_norm": 0.35357686982015196,
1194
+ "learning_rate": 1.5771109560362876e-06,
1195
+ "loss": 0.8892,
1196
+ "mean_token_accuracy": 0.772869510948658,
1197
+ "num_tokens": 688439794.0,
1198
+ "step": 1320
1199
+ },
1200
+ {
1201
+ "epoch": 0.9275564466916573,
1202
+ "grad_norm": 0.342194609350341,
1203
+ "learning_rate": 1.4375436147941383e-06,
1204
+ "loss": 0.8777,
1205
+ "mean_token_accuracy": 0.7758263736963272,
1206
+ "num_tokens": 693668835.0,
1207
+ "step": 1330
1208
+ },
1209
+ {
1210
+ "epoch": 0.934530555313399,
1211
+ "grad_norm": 0.33615513379984474,
1212
+ "learning_rate": 1.297976273551989e-06,
1213
+ "loss": 0.8748,
1214
+ "mean_token_accuracy": 0.7776489421725273,
1215
+ "num_tokens": 698875472.0,
1216
+ "step": 1340
1217
+ },
1218
+ {
1219
+ "epoch": 0.9415046639351408,
1220
+ "grad_norm": 0.3332753726398193,
1221
+ "learning_rate": 1.1584089323098396e-06,
1222
+ "loss": 0.9059,
1223
+ "mean_token_accuracy": 0.7705906823277473,
1224
+ "num_tokens": 704099814.0,
1225
+ "step": 1350
1226
+ },
1227
+ {
1228
+ "epoch": 0.9484787725568826,
1229
+ "grad_norm": 0.340449190806379,
1230
+ "learning_rate": 1.0188415910676903e-06,
1231
+ "loss": 0.9038,
1232
+ "mean_token_accuracy": 0.7700599417090416,
1233
+ "num_tokens": 709321660.0,
1234
+ "step": 1360
1235
+ },
1236
+ {
1237
+ "epoch": 0.9554528811786244,
1238
+ "grad_norm": 0.3508068496166604,
1239
+ "learning_rate": 8.792742498255409e-07,
1240
+ "loss": 0.9158,
1241
+ "mean_token_accuracy": 0.7672045320272446,
1242
+ "num_tokens": 714524108.0,
1243
+ "step": 1370
1244
+ },
1245
+ {
1246
+ "epoch": 0.9624269898003661,
1247
+ "grad_norm": 0.3479382682729307,
1248
+ "learning_rate": 7.397069085833916e-07,
1249
+ "loss": 0.8845,
1250
+ "mean_token_accuracy": 0.7751765333116054,
1251
+ "num_tokens": 719760853.0,
1252
+ "step": 1380
1253
+ },
1254
+ {
1255
+ "epoch": 0.969401098422108,
1256
+ "grad_norm": 0.3621256902837671,
1257
+ "learning_rate": 6.001395673412422e-07,
1258
+ "loss": 0.9034,
1259
+ "mean_token_accuracy": 0.7712403625249863,
1260
+ "num_tokens": 724978510.0,
1261
+ "step": 1390
1262
+ },
1263
+ {
1264
+ "epoch": 0.9763752070438497,
1265
+ "grad_norm": 3.421362435995844,
1266
+ "learning_rate": 4.605722260990929e-07,
1267
+ "loss": 0.9473,
1268
+ "mean_token_accuracy": 0.7611337043344975,
1269
+ "num_tokens": 730179338.0,
1270
+ "step": 1400
1271
+ },
1272
+ {
1273
+ "epoch": 0.9833493156655915,
1274
+ "grad_norm": 0.33950753467464423,
1275
+ "learning_rate": 3.210048848569435e-07,
1276
+ "loss": 0.9271,
1277
+ "mean_token_accuracy": 0.7654321685433387,
1278
+ "num_tokens": 735386128.0,
1279
+ "step": 1410
1280
+ },
1281
+ {
1282
+ "epoch": 0.9903234242873332,
1283
+ "grad_norm": 0.3241192277150905,
1284
+ "learning_rate": 1.8143754361479416e-07,
1285
+ "loss": 0.9077,
1286
+ "mean_token_accuracy": 0.7705234363675117,
1287
+ "num_tokens": 740621004.0,
1288
+ "step": 1420
1289
+ },
1290
+ {
1291
+ "epoch": 0.9972975329090751,
1292
+ "grad_norm": 0.3650397178243905,
1293
+ "learning_rate": 4.187020237264481e-08,
1294
+ "loss": 0.8891,
1295
+ "mean_token_accuracy": 0.7738757006824016,
1296
+ "num_tokens": 745820078.0,
1297
+ "step": 1430
1298
+ }
1299
+ ],
1300
+ "logging_steps": 10,
1301
+ "max_steps": 1433,
1302
+ "num_input_tokens_seen": 0,
1303
+ "num_train_epochs": 1,
1304
+ "save_steps": 500,
1305
+ "stateful_callbacks": {
1306
+ "TrainerControl": {
1307
+ "args": {
1308
+ "should_epoch_stop": false,
1309
+ "should_evaluate": false,
1310
+ "should_log": false,
1311
+ "should_save": true,
1312
+ "should_training_stop": true
1313
+ },
1314
+ "attributes": {}
1315
+ }
1316
+ },
1317
+ "total_flos": 785152020578304.0,
1318
+ "train_batch_size": 1,
1319
+ "trial_name": null,
1320
+ "trial_params": null
1321
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b748bd5b2502fae2fa7b190379dfe575a474c4773d0a102fd4616e74900b314
3
+ size 7096
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)