sarahharouni commited on
Commit
511846b
·
verified ·
1 Parent(s): 942b863

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-126/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: BAAI/bge-m3
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.8379377126693726
25
+
26
+ cosine_accuracy: 0.9651162790697675
27
+
28
+ runtime: 77.5038
29
+
30
+ samples_per_second: 1.11
31
+
32
+ steps_per_second: 0.142
33
+
34
+ : 2.9411764705882355
35
+
36
+ ## Usage
37
+
38
+ ### Direct Usage (Sentence Transformers)
39
+
40
+ First install the Sentence Transformers library:
41
+
42
+ ```bash
43
+ pip install -U sentence-transformers
44
+ ```
45
+
46
+ Then you can load this model and run inference.
47
+ ```python
48
+ from sentence_transformers import SentenceTransformer
49
+
50
+ # Download from the Hugging Face Hub
51
+ model = SentenceTransformer("sentence_transformers_model_id")
52
+ # Run inference
53
+ sentences = [
54
+ 'search_query: autotrain',
55
+ 'search_query: auto train',
56
+ 'search_query: i love autotrain',
57
+ ]
58
+ embeddings = model.encode(sentences)
59
+ print(embeddings.shape)
60
+
61
+ # Get the similarity scores for the embeddings
62
+ similarities = model.similarity(embeddings, embeddings)
63
+ print(similarities.shape)
64
+ ```
checkpoint-126/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-126/README.md ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:340
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-m3
10
+ widget:
11
+ - source_sentence: What parameters are needed to configure a gauge?
12
+ sentences:
13
+ - Anticipate failures, assess and control risky situations, apply fail-safe actions,
14
+ optimize maintenance actions, and capitalize knowledge and experience.
15
+ - A public sequence is visible to all users on the platform, while a private sequence
16
+ is only visible to its creator.
17
+ - Title, variable, units, type of gauge (standard, donut, horizontal, vertical),
18
+ color ranges, optional transparency.
19
+ - source_sentence: What does the Analysis tab in Kasem include?
20
+ sentences:
21
+ - '**Degradations** and **deviations** can be linked to a specific equipment and/or
22
+ a set of equipment, allowing centralized management of issues related to the equipment.'
23
+ - By clicking on the Report button, users are redirected to the Saved reports tab
24
+ where they can view all saved reports.
25
+ - Time series visualization, real-time dashboards, and equipment or fleet knowledge
26
+ visualization through maintenance-oriented graphs.
27
+ - source_sentence: What is a timer used for in Kasem?
28
+ sentences:
29
+ - A plot displays the evolution of a variable over time, allowing the user to observe
30
+ trends and anomalies in the data visually.
31
+ - Users can configure the value range, colors of gauges and LEDs, as well as the
32
+ time period for graphs and plots.
33
+ - A timer sums the time during which a particular event is occurring, each time
34
+ it occurs.
35
+ - source_sentence: What is the difference between analog and boolean variables?
36
+ sentences:
37
+ - 'Two types of visualisation are available: Equipment knowledge visualisation and
38
+ Fleet knowledge visualisation.'
39
+ - Analog variables represent continuous values, while boolean variables only take
40
+ true or false values.
41
+ - 'The types include: Stats, Heatmap, Profiles, Distributions, and Alarms.'
42
+ - source_sentence: What is the role of the equipment/fleet selector in the dashboard
43
+ window?
44
+ sentences:
45
+ - To display a 3D graph, you need to set 'View3D' to 'true' in the graph's parameters.
46
+ - Click 'New fleet', enter the name, select agents, and click 'Save'.
47
+ - The selector allows you to choose the equipment or fleet for which the dashboards
48
+ are configured, in order to display specific data.
49
+ pipeline_tag: sentence-similarity
50
+ library_name: sentence-transformers
51
+ metrics:
52
+ - cosine_accuracy
53
+ model-index:
54
+ - name: SentenceTransformer based on BAAI/bge-m3
55
+ results:
56
+ - task:
57
+ type: triplet
58
+ name: Triplet
59
+ dataset:
60
+ name: Unknown
61
+ type: unknown
62
+ metrics:
63
+ - type: cosine_accuracy
64
+ value: 0.9651162790697675
65
+ name: Cosine Accuracy
66
+ ---
67
+
68
+ # SentenceTransformer based on BAAI/bge-m3
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
71
+
72
+ ## Model Details
73
+
74
+ ### Model Description
75
+ - **Model Type:** Sentence Transformer
76
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
77
+ - **Maximum Sequence Length:** 8192 tokens
78
+ - **Output Dimensionality:** 1024 dimensions
79
+ - **Similarity Function:** Cosine Similarity
80
+ <!-- - **Training Dataset:** Unknown -->
81
+ <!-- - **Language:** Unknown -->
82
+ <!-- - **License:** Unknown -->
83
+
84
+ ### Model Sources
85
+
86
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
87
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
88
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
89
+
90
+ ### Full Model Architecture
91
+
92
+ ```
93
+ SentenceTransformer(
94
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
95
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
96
+ (2): Normalize()
97
+ )
98
+ ```
99
+
100
+ ## Usage
101
+
102
+ ### Direct Usage (Sentence Transformers)
103
+
104
+ First install the Sentence Transformers library:
105
+
106
+ ```bash
107
+ pip install -U sentence-transformers
108
+ ```
109
+
110
+ Then you can load this model and run inference.
111
+ ```python
112
+ from sentence_transformers import SentenceTransformer
113
+
114
+ # Download from the 🤗 Hub
115
+ model = SentenceTransformer("sentence_transformers_model_id")
116
+ # Run inference
117
+ sentences = [
118
+ 'What is the role of the equipment/fleet selector in the dashboard window?',
119
+ 'The selector allows you to choose the equipment or fleet for which the dashboards are configured, in order to display specific data.',
120
+ "Click 'New fleet', enter the name, select agents, and click 'Save'.",
121
+ ]
122
+ embeddings = model.encode(sentences)
123
+ print(embeddings.shape)
124
+ # [3, 1024]
125
+
126
+ # Get the similarity scores for the embeddings
127
+ similarities = model.similarity(embeddings, embeddings)
128
+ print(similarities.shape)
129
+ # [3, 3]
130
+ ```
131
+
132
+ <!--
133
+ ### Direct Usage (Transformers)
134
+
135
+ <details><summary>Click to see the direct usage in Transformers</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Downstream Usage (Sentence Transformers)
142
+
143
+ You can finetune this model on your own dataset.
144
+
145
+ <details><summary>Click to expand</summary>
146
+
147
+ </details>
148
+ -->
149
+
150
+ <!--
151
+ ### Out-of-Scope Use
152
+
153
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
154
+ -->
155
+
156
+ ## Evaluation
157
+
158
+ ### Metrics
159
+
160
+ #### Triplet
161
+
162
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
163
+
164
+ | Metric | Value |
165
+ |:--------------------|:-----------|
166
+ | **cosine_accuracy** | **0.9651** |
167
+
168
+ <!--
169
+ ## Bias, Risks and Limitations
170
+
171
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
172
+ -->
173
+
174
+ <!--
175
+ ### Recommendations
176
+
177
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
178
+ -->
179
+
180
+ ## Training Details
181
+
182
+ ### Training Dataset
183
+
184
+ #### Unnamed Dataset
185
+
186
+
187
+ * Size: 340 training samples
188
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
189
+ * Approximate statistics based on the first 340 samples:
190
+ | | anchor | positive | negative |
191
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
192
+ | type | string | string | string |
193
+ | details | <ul><li>min: 7 tokens</li><li>mean: 14.25 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.48 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 29.52 tokens</li><li>max: 84 tokens</li></ul> |
194
+ * Samples:
195
+ | anchor | positive | negative |
196
+ |:----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
197
+ | <code>What does the 'L' character do in a Cron expression?</code> | <code>The 'L' character stands for 'last'. For example, 'L' in the day-of-month field means 'the last day of the month'.</code> | <code>They allow expanding or collapsing levels of causes to explore the chains leading to root causes.</code> |
198
+ | <code>How do you link a variable to a characteristic for a timeline?</code> | <code>In Knowledge Administration under Equipment/Degradations, select the equipment, then in the Characteristics tab, add or modify a characteristic to link it to a variable.</code> | <code>They allow expanding or collapsing levels of causes to explore the chains leading to root causes.</code> |
199
+ | <code>Which modules are detailed in the Basics documentation?</code> | <code>Event, Equipment, Analysis, Task, Report, Documentation, and a glossary of specific terms.</code> | <code>When a new equipment is installed, a new KPI is defined, or to manage equipment more efficiently.</code> |
200
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
201
+ ```json
202
+ {
203
+ "scale": 20.0,
204
+ "similarity_fct": "cos_sim"
205
+ }
206
+ ```
207
+
208
+ ### Evaluation Dataset
209
+
210
+ #### Unnamed Dataset
211
+
212
+
213
+ * Size: 86 evaluation samples
214
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
215
+ * Approximate statistics based on the first 86 samples:
216
+ | | anchor | positive | negative |
217
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
218
+ | type | string | string | string |
219
+ | details | <ul><li>min: 8 tokens</li><li>mean: 15.12 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.36 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 26.0 tokens</li><li>max: 53 tokens</li></ul> |
220
+ * Samples:
221
+ | anchor | positive | negative |
222
+ |:---------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
223
+ | <code>What are the four main modules covered by the advanced documentation?</code> | <code>Data processing, knowledge analysis, knowledge administration, and system administration.</code> | <code>It is used to discretize data and condition the display of curves. Each curve represents a variable within a Mode interval.</code> |
224
+ | <code>What is the role of the equipment/fleet selector in the dashboard window?</code> | <code>The selector allows you to choose the equipment or fleet for which the dashboards are configured, in order to display specific data.</code> | <code>Click 'New fleet', enter the name, select agents, and click 'Save'.</code> |
225
+ | <code>What are the filters in the `General` tab used for?</code> | <code>The filters, toggled using four `buttons`, allow displaying equipment-related news based on their type: `intervention`, `document`, `report`, or `event`.</code> | <code>They indicate binary states such as equipment running, stopped, or in protection mode.</code> |
226
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
227
+ ```json
228
+ {
229
+ "scale": 20.0,
230
+ "similarity_fct": "cos_sim"
231
+ }
232
+ ```
233
+
234
+ ### Training Hyperparameters
235
+ #### Non-Default Hyperparameters
236
+
237
+ - `eval_strategy`: epoch
238
+ - `per_device_train_batch_size`: 4
239
+ - `gradient_accumulation_steps`: 2
240
+ - `learning_rate`: 3e-05
241
+ - `warmup_ratio`: 0.1
242
+ - `fp16`: True
243
+ - `load_best_model_at_end`: True
244
+ - `optim`: sgd
245
+ - `ddp_find_unused_parameters`: False
246
+
247
+ #### All Hyperparameters
248
+ <details><summary>Click to expand</summary>
249
+
250
+ - `overwrite_output_dir`: False
251
+ - `do_predict`: False
252
+ - `eval_strategy`: epoch
253
+ - `prediction_loss_only`: True
254
+ - `per_device_train_batch_size`: 4
255
+ - `per_device_eval_batch_size`: 8
256
+ - `per_gpu_train_batch_size`: None
257
+ - `per_gpu_eval_batch_size`: None
258
+ - `gradient_accumulation_steps`: 2
259
+ - `eval_accumulation_steps`: None
260
+ - `torch_empty_cache_steps`: None
261
+ - `learning_rate`: 3e-05
262
+ - `weight_decay`: 0.0
263
+ - `adam_beta1`: 0.9
264
+ - `adam_beta2`: 0.999
265
+ - `adam_epsilon`: 1e-08
266
+ - `max_grad_norm`: 1.0
267
+ - `num_train_epochs`: 3
268
+ - `max_steps`: -1
269
+ - `lr_scheduler_type`: linear
270
+ - `lr_scheduler_kwargs`: {}
271
+ - `warmup_ratio`: 0.1
272
+ - `warmup_steps`: 0
273
+ - `log_level`: passive
274
+ - `log_level_replica`: warning
275
+ - `log_on_each_node`: True
276
+ - `logging_nan_inf_filter`: True
277
+ - `save_safetensors`: True
278
+ - `save_on_each_node`: False
279
+ - `save_only_model`: False
280
+ - `restore_callback_states_from_checkpoint`: False
281
+ - `no_cuda`: False
282
+ - `use_cpu`: False
283
+ - `use_mps_device`: False
284
+ - `seed`: 42
285
+ - `data_seed`: None
286
+ - `jit_mode_eval`: False
287
+ - `use_ipex`: False
288
+ - `bf16`: False
289
+ - `fp16`: True
290
+ - `fp16_opt_level`: O1
291
+ - `half_precision_backend`: auto
292
+ - `bf16_full_eval`: False
293
+ - `fp16_full_eval`: False
294
+ - `tf32`: None
295
+ - `local_rank`: 0
296
+ - `ddp_backend`: None
297
+ - `tpu_num_cores`: None
298
+ - `tpu_metrics_debug`: False
299
+ - `debug`: []
300
+ - `dataloader_drop_last`: False
301
+ - `dataloader_num_workers`: 0
302
+ - `dataloader_prefetch_factor`: None
303
+ - `past_index`: -1
304
+ - `disable_tqdm`: False
305
+ - `remove_unused_columns`: True
306
+ - `label_names`: None
307
+ - `load_best_model_at_end`: True
308
+ - `ignore_data_skip`: False
309
+ - `fsdp`: []
310
+ - `fsdp_min_num_params`: 0
311
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
312
+ - `fsdp_transformer_layer_cls_to_wrap`: None
313
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
314
+ - `deepspeed`: None
315
+ - `label_smoothing_factor`: 0.0
316
+ - `optim`: sgd
317
+ - `optim_args`: None
318
+ - `adafactor`: False
319
+ - `group_by_length`: False
320
+ - `length_column_name`: length
321
+ - `ddp_find_unused_parameters`: False
322
+ - `ddp_bucket_cap_mb`: None
323
+ - `ddp_broadcast_buffers`: False
324
+ - `dataloader_pin_memory`: True
325
+ - `dataloader_persistent_workers`: False
326
+ - `skip_memory_metrics`: True
327
+ - `use_legacy_prediction_loop`: False
328
+ - `push_to_hub`: False
329
+ - `resume_from_checkpoint`: None
330
+ - `hub_model_id`: None
331
+ - `hub_strategy`: every_save
332
+ - `hub_private_repo`: None
333
+ - `hub_always_push`: False
334
+ - `gradient_checkpointing`: False
335
+ - `gradient_checkpointing_kwargs`: None
336
+ - `include_inputs_for_metrics`: False
337
+ - `include_for_metrics`: []
338
+ - `eval_do_concat_batches`: True
339
+ - `fp16_backend`: auto
340
+ - `push_to_hub_model_id`: None
341
+ - `push_to_hub_organization`: None
342
+ - `mp_parameters`:
343
+ - `auto_find_batch_size`: False
344
+ - `full_determinism`: False
345
+ - `torchdynamo`: None
346
+ - `ray_scope`: last
347
+ - `ddp_timeout`: 1800
348
+ - `torch_compile`: False
349
+ - `torch_compile_backend`: None
350
+ - `torch_compile_mode`: None
351
+ - `dispatch_batches`: None
352
+ - `split_batches`: None
353
+ - `include_tokens_per_second`: False
354
+ - `include_num_input_tokens_seen`: False
355
+ - `neftune_noise_alpha`: None
356
+ - `optim_target_modules`: None
357
+ - `batch_eval_metrics`: False
358
+ - `eval_on_start`: False
359
+ - `use_liger_kernel`: False
360
+ - `eval_use_gather_object`: False
361
+ - `average_tokens_across_devices`: False
362
+ - `prompts`: None
363
+ - `batch_sampler`: batch_sampler
364
+ - `multi_dataset_batch_sampler`: proportional
365
+
366
+ </details>
367
+
368
+ ### Training Logs
369
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
370
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
371
+ | 0.4 | 17 | 0.5842 | - | - |
372
+ | 0.8 | 34 | 0.4413 | - | - |
373
+ | 1.0 | 43 | - | 0.8394 | 0.9651 |
374
+ | 1.1882 | 51 | 0.4844 | - | - |
375
+ | 1.5882 | 68 | 0.4827 | - | - |
376
+ | 1.9882 | 85 | 0.5319 | - | - |
377
+ | 2.0 | 86 | - | 0.8383 | 0.9651 |
378
+ | 2.3765 | 102 | 0.5825 | - | - |
379
+ | 2.7765 | 119 | 0.5355 | - | - |
380
+ | 2.9412 | 126 | - | 0.8379 | 0.9651 |
381
+
382
+
383
+ ### Framework Versions
384
+ - Python: 3.10.16
385
+ - Sentence Transformers: 3.3.1
386
+ - Transformers: 4.48.0
387
+ - PyTorch: 2.4.0
388
+ - Accelerate: 1.2.1
389
+ - Datasets: 3.2.0
390
+ - Tokenizers: 0.21.0
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ #### MultipleNegativesRankingLoss
410
+ ```bibtex
411
+ @misc{henderson2017efficient,
412
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
413
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
414
+ year={2017},
415
+ eprint={1705.00652},
416
+ archivePrefix={arXiv},
417
+ primaryClass={cs.CL}
418
+ }
419
+ ```
420
+
421
+ <!--
422
+ ## Glossary
423
+
424
+ *Clearly define terms in order to be accessible across audiences.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Authors
429
+
430
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Contact
435
+
436
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
+ -->
checkpoint-126/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoint-126/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-126/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1246e02d548f39bc37d7b52bcb5aee097683123d01a5c6796443a8f365a054f5
3
+ size 2271064456
checkpoint-126/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-126/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20e93ac6a02d8d161cb48761bf43258dec3c498061124dc59a7acf1510f061ae
3
+ size 2088
checkpoint-126/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4a3ac39414ad4eb7e3c0da2057ee1123b08074c5fef973cc95d1f3460c1004a
3
+ size 13990
checkpoint-126/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d95161f978d2461508a828136f0c18f61cd6fa369963ba3776f55bd11a90d912
3
+ size 1064
checkpoint-126/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
checkpoint-126/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
checkpoint-126/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-126/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
checkpoint-126/tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }
checkpoint-126/trainer_state.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8379377126693726,
3
+ "best_model_checkpoint": "autotrain-pe4xw-rb8r8/checkpoint-126",
4
+ "epoch": 2.9411764705882355,
5
+ "eval_steps": 500,
6
+ "global_step": 126,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.4,
13
+ "grad_norm": 20.175811767578125,
14
+ "learning_rate": 2.893805309734513e-05,
15
+ "loss": 0.5842,
16
+ "step": 17
17
+ },
18
+ {
19
+ "epoch": 0.8,
20
+ "grad_norm": 13.500060081481934,
21
+ "learning_rate": 2.442477876106195e-05,
22
+ "loss": 0.4413,
23
+ "step": 34
24
+ },
25
+ {
26
+ "epoch": 1.0,
27
+ "eval_cosine_accuracy": 0.9651162790697675,
28
+ "eval_loss": 0.8393570780754089,
29
+ "eval_runtime": 77.8013,
30
+ "eval_samples_per_second": 1.105,
31
+ "eval_steps_per_second": 0.141,
32
+ "step": 43
33
+ },
34
+ {
35
+ "epoch": 1.188235294117647,
36
+ "grad_norm": 14.887923240661621,
37
+ "learning_rate": 1.991150442477876e-05,
38
+ "loss": 0.4844,
39
+ "step": 51
40
+ },
41
+ {
42
+ "epoch": 1.5882352941176472,
43
+ "grad_norm": 21.601289749145508,
44
+ "learning_rate": 1.5398230088495576e-05,
45
+ "loss": 0.4827,
46
+ "step": 68
47
+ },
48
+ {
49
+ "epoch": 1.988235294117647,
50
+ "grad_norm": 19.94289207458496,
51
+ "learning_rate": 1.088495575221239e-05,
52
+ "loss": 0.5319,
53
+ "step": 85
54
+ },
55
+ {
56
+ "epoch": 2.0,
57
+ "eval_cosine_accuracy": 0.9651162790697675,
58
+ "eval_loss": 0.8382742404937744,
59
+ "eval_runtime": 78.3331,
60
+ "eval_samples_per_second": 1.098,
61
+ "eval_steps_per_second": 0.14,
62
+ "step": 86
63
+ },
64
+ {
65
+ "epoch": 2.376470588235294,
66
+ "grad_norm": 36.912296295166016,
67
+ "learning_rate": 6.371681415929204e-06,
68
+ "loss": 0.5825,
69
+ "step": 102
70
+ },
71
+ {
72
+ "epoch": 2.776470588235294,
73
+ "grad_norm": 15.572786331176758,
74
+ "learning_rate": 1.8584070796460177e-06,
75
+ "loss": 0.5355,
76
+ "step": 119
77
+ },
78
+ {
79
+ "epoch": 2.9411764705882355,
80
+ "eval_cosine_accuracy": 0.9651162790697675,
81
+ "eval_loss": 0.8379377126693726,
82
+ "eval_runtime": 77.9595,
83
+ "eval_samples_per_second": 1.103,
84
+ "eval_steps_per_second": 0.141,
85
+ "step": 126
86
+ }
87
+ ],
88
+ "logging_steps": 17,
89
+ "max_steps": 126,
90
+ "num_input_tokens_seen": 0,
91
+ "num_train_epochs": 3,
92
+ "save_steps": 500,
93
+ "stateful_callbacks": {
94
+ "EarlyStoppingCallback": {
95
+ "args": {
96
+ "early_stopping_patience": 5,
97
+ "early_stopping_threshold": 0.01
98
+ },
99
+ "attributes": {
100
+ "early_stopping_patience_counter": 2
101
+ }
102
+ },
103
+ "TrainerControl": {
104
+ "args": {
105
+ "should_epoch_stop": false,
106
+ "should_evaluate": false,
107
+ "should_log": false,
108
+ "should_save": true,
109
+ "should_training_stop": true
110
+ },
111
+ "attributes": {}
112
+ }
113
+ },
114
+ "total_flos": 0.0,
115
+ "train_batch_size": 4,
116
+ "trial_name": null,
117
+ "trial_params": null
118
+ }
checkpoint-126/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c2d487d4c68837ccc6a7f8c3dbe38e8aad412c2c7e4e7897fb9b515bd203a46
3
+ size 5624
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1246e02d548f39bc37d7b52bcb5aee097683123d01a5c6796443a8f365a054f5
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Apr30_08-03-57_r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc/events.out.tfevents.1746000239.r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc.663.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b236238227ed5fc9a978bf92a343211a04aad38dcb9b2c5554477fa13ae50dbd
3
- size 6313
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:179215a39b98983de58efa025947fe90e2db89899543ec8c9e00c23acfba2afb
3
+ size 7192
runs/Apr30_08-03-57_r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc/events.out.tfevents.1746002934.r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc.663.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67881ab7429c9dec08c8109ac05c4f2fec931a84a8a2e211a75b3219e156ab35
3
+ size 412
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c2d487d4c68837ccc6a7f8c3dbe38e8aad412c2c7e4e7897fb9b515bd203a46
3
+ size 5624
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-pe4xw-rb8r8/autotrain-data",
3
+ "model": "BAAI/bge-m3",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 4,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 2,
10
+ "optimizer": "sgd",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-pe4xw-rb8r8",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "sarahharouni",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "triplet",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }