Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +64 -0
- checkpoint-126/1_Pooling/config.json +10 -0
- checkpoint-126/README.md +437 -0
- checkpoint-126/config.json +28 -0
- checkpoint-126/config_sentence_transformers.json +10 -0
- checkpoint-126/model.safetensors +3 -0
- checkpoint-126/modules.json +20 -0
- checkpoint-126/optimizer.pt +3 -0
- checkpoint-126/rng_state.pth +3 -0
- checkpoint-126/scheduler.pt +3 -0
- checkpoint-126/sentence_bert_config.json +4 -0
- checkpoint-126/sentencepiece.bpe.model +3 -0
- checkpoint-126/special_tokens_map.json +51 -0
- checkpoint-126/tokenizer.json +3 -0
- checkpoint-126/tokenizer_config.json +56 -0
- checkpoint-126/trainer_state.json +118 -0
- checkpoint-126/training_args.bin +3 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- runs/Apr30_08-03-57_r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc/events.out.tfevents.1746000239.r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc.663.0 +2 -2
- runs/Apr30_08-03-57_r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc/events.out.tfevents.1746002934.r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc.663.1 +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +56 -0
- training_args.bin +3 -0
- training_params.json +33 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-126/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- autotrain
|
9 |
+
base_model: BAAI/bge-m3
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'search_query: i love autotrain'
|
12 |
+
sentences:
|
13 |
+
- 'search_query: huggingface auto train'
|
14 |
+
- 'search_query: hugging face auto train'
|
15 |
+
- 'search_query: i love autotrain'
|
16 |
+
pipeline_tag: sentence-similarity
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model Trained Using AutoTrain
|
20 |
+
|
21 |
+
- Problem type: Sentence Transformers
|
22 |
+
|
23 |
+
## Validation Metrics
|
24 |
+
loss: 0.8379377126693726
|
25 |
+
|
26 |
+
cosine_accuracy: 0.9651162790697675
|
27 |
+
|
28 |
+
runtime: 77.5038
|
29 |
+
|
30 |
+
samples_per_second: 1.11
|
31 |
+
|
32 |
+
steps_per_second: 0.142
|
33 |
+
|
34 |
+
: 2.9411764705882355
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
|
38 |
+
### Direct Usage (Sentence Transformers)
|
39 |
+
|
40 |
+
First install the Sentence Transformers library:
|
41 |
+
|
42 |
+
```bash
|
43 |
+
pip install -U sentence-transformers
|
44 |
+
```
|
45 |
+
|
46 |
+
Then you can load this model and run inference.
|
47 |
+
```python
|
48 |
+
from sentence_transformers import SentenceTransformer
|
49 |
+
|
50 |
+
# Download from the Hugging Face Hub
|
51 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
52 |
+
# Run inference
|
53 |
+
sentences = [
|
54 |
+
'search_query: autotrain',
|
55 |
+
'search_query: auto train',
|
56 |
+
'search_query: i love autotrain',
|
57 |
+
]
|
58 |
+
embeddings = model.encode(sentences)
|
59 |
+
print(embeddings.shape)
|
60 |
+
|
61 |
+
# Get the similarity scores for the embeddings
|
62 |
+
similarities = model.similarity(embeddings, embeddings)
|
63 |
+
print(similarities.shape)
|
64 |
+
```
|
checkpoint-126/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-126/README.md
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:340
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: BAAI/bge-m3
|
10 |
+
widget:
|
11 |
+
- source_sentence: What parameters are needed to configure a gauge?
|
12 |
+
sentences:
|
13 |
+
- Anticipate failures, assess and control risky situations, apply fail-safe actions,
|
14 |
+
optimize maintenance actions, and capitalize knowledge and experience.
|
15 |
+
- A public sequence is visible to all users on the platform, while a private sequence
|
16 |
+
is only visible to its creator.
|
17 |
+
- Title, variable, units, type of gauge (standard, donut, horizontal, vertical),
|
18 |
+
color ranges, optional transparency.
|
19 |
+
- source_sentence: What does the Analysis tab in Kasem include?
|
20 |
+
sentences:
|
21 |
+
- '**Degradations** and **deviations** can be linked to a specific equipment and/or
|
22 |
+
a set of equipment, allowing centralized management of issues related to the equipment.'
|
23 |
+
- By clicking on the Report button, users are redirected to the Saved reports tab
|
24 |
+
where they can view all saved reports.
|
25 |
+
- Time series visualization, real-time dashboards, and equipment or fleet knowledge
|
26 |
+
visualization through maintenance-oriented graphs.
|
27 |
+
- source_sentence: What is a timer used for in Kasem?
|
28 |
+
sentences:
|
29 |
+
- A plot displays the evolution of a variable over time, allowing the user to observe
|
30 |
+
trends and anomalies in the data visually.
|
31 |
+
- Users can configure the value range, colors of gauges and LEDs, as well as the
|
32 |
+
time period for graphs and plots.
|
33 |
+
- A timer sums the time during which a particular event is occurring, each time
|
34 |
+
it occurs.
|
35 |
+
- source_sentence: What is the difference between analog and boolean variables?
|
36 |
+
sentences:
|
37 |
+
- 'Two types of visualisation are available: Equipment knowledge visualisation and
|
38 |
+
Fleet knowledge visualisation.'
|
39 |
+
- Analog variables represent continuous values, while boolean variables only take
|
40 |
+
true or false values.
|
41 |
+
- 'The types include: Stats, Heatmap, Profiles, Distributions, and Alarms.'
|
42 |
+
- source_sentence: What is the role of the equipment/fleet selector in the dashboard
|
43 |
+
window?
|
44 |
+
sentences:
|
45 |
+
- To display a 3D graph, you need to set 'View3D' to 'true' in the graph's parameters.
|
46 |
+
- Click 'New fleet', enter the name, select agents, and click 'Save'.
|
47 |
+
- The selector allows you to choose the equipment or fleet for which the dashboards
|
48 |
+
are configured, in order to display specific data.
|
49 |
+
pipeline_tag: sentence-similarity
|
50 |
+
library_name: sentence-transformers
|
51 |
+
metrics:
|
52 |
+
- cosine_accuracy
|
53 |
+
model-index:
|
54 |
+
- name: SentenceTransformer based on BAAI/bge-m3
|
55 |
+
results:
|
56 |
+
- task:
|
57 |
+
type: triplet
|
58 |
+
name: Triplet
|
59 |
+
dataset:
|
60 |
+
name: Unknown
|
61 |
+
type: unknown
|
62 |
+
metrics:
|
63 |
+
- type: cosine_accuracy
|
64 |
+
value: 0.9651162790697675
|
65 |
+
name: Cosine Accuracy
|
66 |
+
---
|
67 |
+
|
68 |
+
# SentenceTransformer based on BAAI/bge-m3
|
69 |
+
|
70 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
71 |
+
|
72 |
+
## Model Details
|
73 |
+
|
74 |
+
### Model Description
|
75 |
+
- **Model Type:** Sentence Transformer
|
76 |
+
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
|
77 |
+
- **Maximum Sequence Length:** 8192 tokens
|
78 |
+
- **Output Dimensionality:** 1024 dimensions
|
79 |
+
- **Similarity Function:** Cosine Similarity
|
80 |
+
<!-- - **Training Dataset:** Unknown -->
|
81 |
+
<!-- - **Language:** Unknown -->
|
82 |
+
<!-- - **License:** Unknown -->
|
83 |
+
|
84 |
+
### Model Sources
|
85 |
+
|
86 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
87 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
88 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
89 |
+
|
90 |
+
### Full Model Architecture
|
91 |
+
|
92 |
+
```
|
93 |
+
SentenceTransformer(
|
94 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
95 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
96 |
+
(2): Normalize()
|
97 |
+
)
|
98 |
+
```
|
99 |
+
|
100 |
+
## Usage
|
101 |
+
|
102 |
+
### Direct Usage (Sentence Transformers)
|
103 |
+
|
104 |
+
First install the Sentence Transformers library:
|
105 |
+
|
106 |
+
```bash
|
107 |
+
pip install -U sentence-transformers
|
108 |
+
```
|
109 |
+
|
110 |
+
Then you can load this model and run inference.
|
111 |
+
```python
|
112 |
+
from sentence_transformers import SentenceTransformer
|
113 |
+
|
114 |
+
# Download from the 🤗 Hub
|
115 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
116 |
+
# Run inference
|
117 |
+
sentences = [
|
118 |
+
'What is the role of the equipment/fleet selector in the dashboard window?',
|
119 |
+
'The selector allows you to choose the equipment or fleet for which the dashboards are configured, in order to display specific data.',
|
120 |
+
"Click 'New fleet', enter the name, select agents, and click 'Save'.",
|
121 |
+
]
|
122 |
+
embeddings = model.encode(sentences)
|
123 |
+
print(embeddings.shape)
|
124 |
+
# [3, 1024]
|
125 |
+
|
126 |
+
# Get the similarity scores for the embeddings
|
127 |
+
similarities = model.similarity(embeddings, embeddings)
|
128 |
+
print(similarities.shape)
|
129 |
+
# [3, 3]
|
130 |
+
```
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Direct Usage (Transformers)
|
134 |
+
|
135 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
136 |
+
|
137 |
+
</details>
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Downstream Usage (Sentence Transformers)
|
142 |
+
|
143 |
+
You can finetune this model on your own dataset.
|
144 |
+
|
145 |
+
<details><summary>Click to expand</summary>
|
146 |
+
|
147 |
+
</details>
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
### Out-of-Scope Use
|
152 |
+
|
153 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
154 |
+
-->
|
155 |
+
|
156 |
+
## Evaluation
|
157 |
+
|
158 |
+
### Metrics
|
159 |
+
|
160 |
+
#### Triplet
|
161 |
+
|
162 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
163 |
+
|
164 |
+
| Metric | Value |
|
165 |
+
|:--------------------|:-----------|
|
166 |
+
| **cosine_accuracy** | **0.9651** |
|
167 |
+
|
168 |
+
<!--
|
169 |
+
## Bias, Risks and Limitations
|
170 |
+
|
171 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
172 |
+
-->
|
173 |
+
|
174 |
+
<!--
|
175 |
+
### Recommendations
|
176 |
+
|
177 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
178 |
+
-->
|
179 |
+
|
180 |
+
## Training Details
|
181 |
+
|
182 |
+
### Training Dataset
|
183 |
+
|
184 |
+
#### Unnamed Dataset
|
185 |
+
|
186 |
+
|
187 |
+
* Size: 340 training samples
|
188 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
189 |
+
* Approximate statistics based on the first 340 samples:
|
190 |
+
| | anchor | positive | negative |
|
191 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
192 |
+
| type | string | string | string |
|
193 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 14.25 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.48 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 29.52 tokens</li><li>max: 84 tokens</li></ul> |
|
194 |
+
* Samples:
|
195 |
+
| anchor | positive | negative |
|
196 |
+
|:----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
|
197 |
+
| <code>What does the 'L' character do in a Cron expression?</code> | <code>The 'L' character stands for 'last'. For example, 'L' in the day-of-month field means 'the last day of the month'.</code> | <code>They allow expanding or collapsing levels of causes to explore the chains leading to root causes.</code> |
|
198 |
+
| <code>How do you link a variable to a characteristic for a timeline?</code> | <code>In Knowledge Administration under Equipment/Degradations, select the equipment, then in the Characteristics tab, add or modify a characteristic to link it to a variable.</code> | <code>They allow expanding or collapsing levels of causes to explore the chains leading to root causes.</code> |
|
199 |
+
| <code>Which modules are detailed in the Basics documentation?</code> | <code>Event, Equipment, Analysis, Task, Report, Documentation, and a glossary of specific terms.</code> | <code>When a new equipment is installed, a new KPI is defined, or to manage equipment more efficiently.</code> |
|
200 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
201 |
+
```json
|
202 |
+
{
|
203 |
+
"scale": 20.0,
|
204 |
+
"similarity_fct": "cos_sim"
|
205 |
+
}
|
206 |
+
```
|
207 |
+
|
208 |
+
### Evaluation Dataset
|
209 |
+
|
210 |
+
#### Unnamed Dataset
|
211 |
+
|
212 |
+
|
213 |
+
* Size: 86 evaluation samples
|
214 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
215 |
+
* Approximate statistics based on the first 86 samples:
|
216 |
+
| | anchor | positive | negative |
|
217 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
218 |
+
| type | string | string | string |
|
219 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 15.12 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.36 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 26.0 tokens</li><li>max: 53 tokens</li></ul> |
|
220 |
+
* Samples:
|
221 |
+
| anchor | positive | negative |
|
222 |
+
|:---------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
|
223 |
+
| <code>What are the four main modules covered by the advanced documentation?</code> | <code>Data processing, knowledge analysis, knowledge administration, and system administration.</code> | <code>It is used to discretize data and condition the display of curves. Each curve represents a variable within a Mode interval.</code> |
|
224 |
+
| <code>What is the role of the equipment/fleet selector in the dashboard window?</code> | <code>The selector allows you to choose the equipment or fleet for which the dashboards are configured, in order to display specific data.</code> | <code>Click 'New fleet', enter the name, select agents, and click 'Save'.</code> |
|
225 |
+
| <code>What are the filters in the `General` tab used for?</code> | <code>The filters, toggled using four `buttons`, allow displaying equipment-related news based on their type: `intervention`, `document`, `report`, or `event`.</code> | <code>They indicate binary states such as equipment running, stopped, or in protection mode.</code> |
|
226 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
227 |
+
```json
|
228 |
+
{
|
229 |
+
"scale": 20.0,
|
230 |
+
"similarity_fct": "cos_sim"
|
231 |
+
}
|
232 |
+
```
|
233 |
+
|
234 |
+
### Training Hyperparameters
|
235 |
+
#### Non-Default Hyperparameters
|
236 |
+
|
237 |
+
- `eval_strategy`: epoch
|
238 |
+
- `per_device_train_batch_size`: 4
|
239 |
+
- `gradient_accumulation_steps`: 2
|
240 |
+
- `learning_rate`: 3e-05
|
241 |
+
- `warmup_ratio`: 0.1
|
242 |
+
- `fp16`: True
|
243 |
+
- `load_best_model_at_end`: True
|
244 |
+
- `optim`: sgd
|
245 |
+
- `ddp_find_unused_parameters`: False
|
246 |
+
|
247 |
+
#### All Hyperparameters
|
248 |
+
<details><summary>Click to expand</summary>
|
249 |
+
|
250 |
+
- `overwrite_output_dir`: False
|
251 |
+
- `do_predict`: False
|
252 |
+
- `eval_strategy`: epoch
|
253 |
+
- `prediction_loss_only`: True
|
254 |
+
- `per_device_train_batch_size`: 4
|
255 |
+
- `per_device_eval_batch_size`: 8
|
256 |
+
- `per_gpu_train_batch_size`: None
|
257 |
+
- `per_gpu_eval_batch_size`: None
|
258 |
+
- `gradient_accumulation_steps`: 2
|
259 |
+
- `eval_accumulation_steps`: None
|
260 |
+
- `torch_empty_cache_steps`: None
|
261 |
+
- `learning_rate`: 3e-05
|
262 |
+
- `weight_decay`: 0.0
|
263 |
+
- `adam_beta1`: 0.9
|
264 |
+
- `adam_beta2`: 0.999
|
265 |
+
- `adam_epsilon`: 1e-08
|
266 |
+
- `max_grad_norm`: 1.0
|
267 |
+
- `num_train_epochs`: 3
|
268 |
+
- `max_steps`: -1
|
269 |
+
- `lr_scheduler_type`: linear
|
270 |
+
- `lr_scheduler_kwargs`: {}
|
271 |
+
- `warmup_ratio`: 0.1
|
272 |
+
- `warmup_steps`: 0
|
273 |
+
- `log_level`: passive
|
274 |
+
- `log_level_replica`: warning
|
275 |
+
- `log_on_each_node`: True
|
276 |
+
- `logging_nan_inf_filter`: True
|
277 |
+
- `save_safetensors`: True
|
278 |
+
- `save_on_each_node`: False
|
279 |
+
- `save_only_model`: False
|
280 |
+
- `restore_callback_states_from_checkpoint`: False
|
281 |
+
- `no_cuda`: False
|
282 |
+
- `use_cpu`: False
|
283 |
+
- `use_mps_device`: False
|
284 |
+
- `seed`: 42
|
285 |
+
- `data_seed`: None
|
286 |
+
- `jit_mode_eval`: False
|
287 |
+
- `use_ipex`: False
|
288 |
+
- `bf16`: False
|
289 |
+
- `fp16`: True
|
290 |
+
- `fp16_opt_level`: O1
|
291 |
+
- `half_precision_backend`: auto
|
292 |
+
- `bf16_full_eval`: False
|
293 |
+
- `fp16_full_eval`: False
|
294 |
+
- `tf32`: None
|
295 |
+
- `local_rank`: 0
|
296 |
+
- `ddp_backend`: None
|
297 |
+
- `tpu_num_cores`: None
|
298 |
+
- `tpu_metrics_debug`: False
|
299 |
+
- `debug`: []
|
300 |
+
- `dataloader_drop_last`: False
|
301 |
+
- `dataloader_num_workers`: 0
|
302 |
+
- `dataloader_prefetch_factor`: None
|
303 |
+
- `past_index`: -1
|
304 |
+
- `disable_tqdm`: False
|
305 |
+
- `remove_unused_columns`: True
|
306 |
+
- `label_names`: None
|
307 |
+
- `load_best_model_at_end`: True
|
308 |
+
- `ignore_data_skip`: False
|
309 |
+
- `fsdp`: []
|
310 |
+
- `fsdp_min_num_params`: 0
|
311 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
312 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
313 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
314 |
+
- `deepspeed`: None
|
315 |
+
- `label_smoothing_factor`: 0.0
|
316 |
+
- `optim`: sgd
|
317 |
+
- `optim_args`: None
|
318 |
+
- `adafactor`: False
|
319 |
+
- `group_by_length`: False
|
320 |
+
- `length_column_name`: length
|
321 |
+
- `ddp_find_unused_parameters`: False
|
322 |
+
- `ddp_bucket_cap_mb`: None
|
323 |
+
- `ddp_broadcast_buffers`: False
|
324 |
+
- `dataloader_pin_memory`: True
|
325 |
+
- `dataloader_persistent_workers`: False
|
326 |
+
- `skip_memory_metrics`: True
|
327 |
+
- `use_legacy_prediction_loop`: False
|
328 |
+
- `push_to_hub`: False
|
329 |
+
- `resume_from_checkpoint`: None
|
330 |
+
- `hub_model_id`: None
|
331 |
+
- `hub_strategy`: every_save
|
332 |
+
- `hub_private_repo`: None
|
333 |
+
- `hub_always_push`: False
|
334 |
+
- `gradient_checkpointing`: False
|
335 |
+
- `gradient_checkpointing_kwargs`: None
|
336 |
+
- `include_inputs_for_metrics`: False
|
337 |
+
- `include_for_metrics`: []
|
338 |
+
- `eval_do_concat_batches`: True
|
339 |
+
- `fp16_backend`: auto
|
340 |
+
- `push_to_hub_model_id`: None
|
341 |
+
- `push_to_hub_organization`: None
|
342 |
+
- `mp_parameters`:
|
343 |
+
- `auto_find_batch_size`: False
|
344 |
+
- `full_determinism`: False
|
345 |
+
- `torchdynamo`: None
|
346 |
+
- `ray_scope`: last
|
347 |
+
- `ddp_timeout`: 1800
|
348 |
+
- `torch_compile`: False
|
349 |
+
- `torch_compile_backend`: None
|
350 |
+
- `torch_compile_mode`: None
|
351 |
+
- `dispatch_batches`: None
|
352 |
+
- `split_batches`: None
|
353 |
+
- `include_tokens_per_second`: False
|
354 |
+
- `include_num_input_tokens_seen`: False
|
355 |
+
- `neftune_noise_alpha`: None
|
356 |
+
- `optim_target_modules`: None
|
357 |
+
- `batch_eval_metrics`: False
|
358 |
+
- `eval_on_start`: False
|
359 |
+
- `use_liger_kernel`: False
|
360 |
+
- `eval_use_gather_object`: False
|
361 |
+
- `average_tokens_across_devices`: False
|
362 |
+
- `prompts`: None
|
363 |
+
- `batch_sampler`: batch_sampler
|
364 |
+
- `multi_dataset_batch_sampler`: proportional
|
365 |
+
|
366 |
+
</details>
|
367 |
+
|
368 |
+
### Training Logs
|
369 |
+
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|
370 |
+
|:------:|:----:|:-------------:|:---------------:|:---------------:|
|
371 |
+
| 0.4 | 17 | 0.5842 | - | - |
|
372 |
+
| 0.8 | 34 | 0.4413 | - | - |
|
373 |
+
| 1.0 | 43 | - | 0.8394 | 0.9651 |
|
374 |
+
| 1.1882 | 51 | 0.4844 | - | - |
|
375 |
+
| 1.5882 | 68 | 0.4827 | - | - |
|
376 |
+
| 1.9882 | 85 | 0.5319 | - | - |
|
377 |
+
| 2.0 | 86 | - | 0.8383 | 0.9651 |
|
378 |
+
| 2.3765 | 102 | 0.5825 | - | - |
|
379 |
+
| 2.7765 | 119 | 0.5355 | - | - |
|
380 |
+
| 2.9412 | 126 | - | 0.8379 | 0.9651 |
|
381 |
+
|
382 |
+
|
383 |
+
### Framework Versions
|
384 |
+
- Python: 3.10.16
|
385 |
+
- Sentence Transformers: 3.3.1
|
386 |
+
- Transformers: 4.48.0
|
387 |
+
- PyTorch: 2.4.0
|
388 |
+
- Accelerate: 1.2.1
|
389 |
+
- Datasets: 3.2.0
|
390 |
+
- Tokenizers: 0.21.0
|
391 |
+
|
392 |
+
## Citation
|
393 |
+
|
394 |
+
### BibTeX
|
395 |
+
|
396 |
+
#### Sentence Transformers
|
397 |
+
```bibtex
|
398 |
+
@inproceedings{reimers-2019-sentence-bert,
|
399 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
400 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
401 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
402 |
+
month = "11",
|
403 |
+
year = "2019",
|
404 |
+
publisher = "Association for Computational Linguistics",
|
405 |
+
url = "https://arxiv.org/abs/1908.10084",
|
406 |
+
}
|
407 |
+
```
|
408 |
+
|
409 |
+
#### MultipleNegativesRankingLoss
|
410 |
+
```bibtex
|
411 |
+
@misc{henderson2017efficient,
|
412 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
413 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
414 |
+
year={2017},
|
415 |
+
eprint={1705.00652},
|
416 |
+
archivePrefix={arXiv},
|
417 |
+
primaryClass={cs.CL}
|
418 |
+
}
|
419 |
+
```
|
420 |
+
|
421 |
+
<!--
|
422 |
+
## Glossary
|
423 |
+
|
424 |
+
*Clearly define terms in order to be accessible across audiences.*
|
425 |
+
-->
|
426 |
+
|
427 |
+
<!--
|
428 |
+
## Model Card Authors
|
429 |
+
|
430 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
431 |
+
-->
|
432 |
+
|
433 |
+
<!--
|
434 |
+
## Model Card Contact
|
435 |
+
|
436 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
437 |
+
-->
|
checkpoint-126/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-m3",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoint-126/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
checkpoint-126/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1246e02d548f39bc37d7b52bcb5aee097683123d01a5c6796443a8f365a054f5
|
3 |
+
size 2271064456
|
checkpoint-126/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoint-126/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20e93ac6a02d8d161cb48761bf43258dec3c498061124dc59a7acf1510f061ae
|
3 |
+
size 2088
|
checkpoint-126/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4a3ac39414ad4eb7e3c0da2057ee1123b08074c5fef973cc95d1f3460c1004a
|
3 |
+
size 13990
|
checkpoint-126/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d95161f978d2461508a828136f0c18f61cd6fa369963ba3776f55bd11a90d912
|
3 |
+
size 1064
|
checkpoint-126/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-126/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
checkpoint-126/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoint-126/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
|
3 |
+
size 17083053
|
checkpoint-126/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
55 |
+
"unk_token": "<unk>"
|
56 |
+
}
|
checkpoint-126/trainer_state.json
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.8379377126693726,
|
3 |
+
"best_model_checkpoint": "autotrain-pe4xw-rb8r8/checkpoint-126",
|
4 |
+
"epoch": 2.9411764705882355,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 126,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.4,
|
13 |
+
"grad_norm": 20.175811767578125,
|
14 |
+
"learning_rate": 2.893805309734513e-05,
|
15 |
+
"loss": 0.5842,
|
16 |
+
"step": 17
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.8,
|
20 |
+
"grad_norm": 13.500060081481934,
|
21 |
+
"learning_rate": 2.442477876106195e-05,
|
22 |
+
"loss": 0.4413,
|
23 |
+
"step": 34
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 1.0,
|
27 |
+
"eval_cosine_accuracy": 0.9651162790697675,
|
28 |
+
"eval_loss": 0.8393570780754089,
|
29 |
+
"eval_runtime": 77.8013,
|
30 |
+
"eval_samples_per_second": 1.105,
|
31 |
+
"eval_steps_per_second": 0.141,
|
32 |
+
"step": 43
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.188235294117647,
|
36 |
+
"grad_norm": 14.887923240661621,
|
37 |
+
"learning_rate": 1.991150442477876e-05,
|
38 |
+
"loss": 0.4844,
|
39 |
+
"step": 51
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 1.5882352941176472,
|
43 |
+
"grad_norm": 21.601289749145508,
|
44 |
+
"learning_rate": 1.5398230088495576e-05,
|
45 |
+
"loss": 0.4827,
|
46 |
+
"step": 68
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 1.988235294117647,
|
50 |
+
"grad_norm": 19.94289207458496,
|
51 |
+
"learning_rate": 1.088495575221239e-05,
|
52 |
+
"loss": 0.5319,
|
53 |
+
"step": 85
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 2.0,
|
57 |
+
"eval_cosine_accuracy": 0.9651162790697675,
|
58 |
+
"eval_loss": 0.8382742404937744,
|
59 |
+
"eval_runtime": 78.3331,
|
60 |
+
"eval_samples_per_second": 1.098,
|
61 |
+
"eval_steps_per_second": 0.14,
|
62 |
+
"step": 86
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 2.376470588235294,
|
66 |
+
"grad_norm": 36.912296295166016,
|
67 |
+
"learning_rate": 6.371681415929204e-06,
|
68 |
+
"loss": 0.5825,
|
69 |
+
"step": 102
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 2.776470588235294,
|
73 |
+
"grad_norm": 15.572786331176758,
|
74 |
+
"learning_rate": 1.8584070796460177e-06,
|
75 |
+
"loss": 0.5355,
|
76 |
+
"step": 119
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 2.9411764705882355,
|
80 |
+
"eval_cosine_accuracy": 0.9651162790697675,
|
81 |
+
"eval_loss": 0.8379377126693726,
|
82 |
+
"eval_runtime": 77.9595,
|
83 |
+
"eval_samples_per_second": 1.103,
|
84 |
+
"eval_steps_per_second": 0.141,
|
85 |
+
"step": 126
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"logging_steps": 17,
|
89 |
+
"max_steps": 126,
|
90 |
+
"num_input_tokens_seen": 0,
|
91 |
+
"num_train_epochs": 3,
|
92 |
+
"save_steps": 500,
|
93 |
+
"stateful_callbacks": {
|
94 |
+
"EarlyStoppingCallback": {
|
95 |
+
"args": {
|
96 |
+
"early_stopping_patience": 5,
|
97 |
+
"early_stopping_threshold": 0.01
|
98 |
+
},
|
99 |
+
"attributes": {
|
100 |
+
"early_stopping_patience_counter": 2
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"TrainerControl": {
|
104 |
+
"args": {
|
105 |
+
"should_epoch_stop": false,
|
106 |
+
"should_evaluate": false,
|
107 |
+
"should_log": false,
|
108 |
+
"should_save": true,
|
109 |
+
"should_training_stop": true
|
110 |
+
},
|
111 |
+
"attributes": {}
|
112 |
+
}
|
113 |
+
},
|
114 |
+
"total_flos": 0.0,
|
115 |
+
"train_batch_size": 4,
|
116 |
+
"trial_name": null,
|
117 |
+
"trial_params": null
|
118 |
+
}
|
checkpoint-126/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c2d487d4c68837ccc6a7f8c3dbe38e8aad412c2c7e4e7897fb9b515bd203a46
|
3 |
+
size 5624
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-m3",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1246e02d548f39bc37d7b52bcb5aee097683123d01a5c6796443a8f365a054f5
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
runs/Apr30_08-03-57_r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc/events.out.tfevents.1746000239.r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc.663.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:179215a39b98983de58efa025947fe90e2db89899543ec8c9e00c23acfba2afb
|
3 |
+
size 7192
|
runs/Apr30_08-03-57_r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc/events.out.tfevents.1746002934.r-sarahharouni-mistral-rag-kasem-7mps8ht6-81272-u15nc.663.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67881ab7429c9dec08c8109ac05c4f2fec931a84a8a2e211a75b3219e156ab35
|
3 |
+
size 412
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
55 |
+
"unk_token": "<unk>"
|
56 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c2d487d4c68837ccc6a7f8c3dbe38e8aad412c2c7e4e7897fb9b515bd203a46
|
3 |
+
size 5624
|
training_params.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data_path": "autotrain-pe4xw-rb8r8/autotrain-data",
|
3 |
+
"model": "BAAI/bge-m3",
|
4 |
+
"lr": 3e-05,
|
5 |
+
"epochs": 3,
|
6 |
+
"max_seq_length": 128,
|
7 |
+
"batch_size": 4,
|
8 |
+
"warmup_ratio": 0.1,
|
9 |
+
"gradient_accumulation": 2,
|
10 |
+
"optimizer": "sgd",
|
11 |
+
"scheduler": "linear",
|
12 |
+
"weight_decay": 0.0,
|
13 |
+
"max_grad_norm": 1.0,
|
14 |
+
"seed": 42,
|
15 |
+
"train_split": "train",
|
16 |
+
"valid_split": "validation",
|
17 |
+
"logging_steps": -1,
|
18 |
+
"project_name": "autotrain-pe4xw-rb8r8",
|
19 |
+
"auto_find_batch_size": false,
|
20 |
+
"mixed_precision": "fp16",
|
21 |
+
"save_total_limit": 1,
|
22 |
+
"push_to_hub": true,
|
23 |
+
"eval_strategy": "epoch",
|
24 |
+
"username": "sarahharouni",
|
25 |
+
"log": "tensorboard",
|
26 |
+
"early_stopping_patience": 5,
|
27 |
+
"early_stopping_threshold": 0.01,
|
28 |
+
"trainer": "triplet",
|
29 |
+
"sentence1_column": "autotrain_sentence1",
|
30 |
+
"sentence2_column": "autotrain_sentence2",
|
31 |
+
"sentence3_column": "autotrain_sentence3",
|
32 |
+
"target_column": "autotrain_target"
|
33 |
+
}
|