--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-Small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Samll Ar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: ar split: test args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 44.497132774591975 --- # Whisper Samll Ar This model is a fine-tuned version of [openai/whisper-Small](https://huggingface.co/openai/whisper-Small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3402 - Wer: 44.4971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3175 | 0.4122 | 1000 | 0.4157 | 50.2739 | | 0.2705 | 0.8244 | 2000 | 0.3707 | 49.3769 | | 0.1648 | 1.2366 | 3000 | 0.3512 | 45.7212 | | 0.1485 | 1.6488 | 4000 | 0.3402 | 44.4971 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0