File size: 22,252 Bytes
dba0abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
---
base_model: saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:503
- loss:SoftmaxLoss
widget:
- source_sentence: '#La posición de Ingeniero QA Manual deberá:Priorización de la
    ejecución de pruebas.Experiencia en la ejecución de pruebas manuales y en la documentación
    de resultados.Proponer la estrategia de automatización de pruebas y las mejoras
    a los procesos de automatización.Manejo de plataformas como Atlassian Jira, Atlassian
    Confluence y GitLab.Conocimiento en motores de bases de datos y lenguajes de programación
    como .NET, Java, PHP y Python.'
  sentences:
  - 'Streamlined Project Management with Trello: AI Integration.Business.Business
    Essentials.Be able to Initialize and Structure a Go-To-Market Plan Using Trello
    and AI Tools. Be able to Generate and Organize GTM Strategies Using ChatGPT and
    Trello. Be able to Enhance GTM Plan Content and Workflow Efficiency with Trello’s
    AI Tools'
  - 'Microsoft Power BI Data Analyst.Information Technology.Security.Learn to use
    Power BI to connect to data sources and transform them into meaningful insights.  .
    Prepare Excel data for analysis in Power BI using the most common formulas and
    functions in a worksheet.     . Learn to use the visualization and report capabilities
    of Power BI to create compelling reports and dashboards.  . Demonstrate your new
    skills with a capstone project and prepare for the industry-recognized Microsoft
    PL-300 Certification exam.   '
  - Getting Started in GIMP.Computer Science.Design and Product.Become Familiar with
    Using GIMP and GIMPs User Interface. Use Crop and Text Tools. Basic Color Correction
    Techniques
- source_sentence: '#La posición de Gerente Jurídico deberá:Apoyar al negocio en la
    elaboración y revisión y/o negociación de contratos, así como brindar la asesoría
    y soporte legal en las etapas precontractuales y postcontractuales.Asesorar a
    la Gerencia General en diversos temas, incluyendo integraciones empresariales.Participar
    activamente en la toma de decisiones estratégicas para la operación local y en
    diversos temas en los países a cargo.Asesorar asuntos legales de propiedad intelectual
    tales como, registros de marcas, patentes y permisos para uso de sustancias y
    equipos.Fungir como Representante Legal, Apoderado General y Oficial de Cumplimiento
    de todas las compañías en los países a cargo.Representación de los accionistas
    extranjeros en juntas y asambleas y/o llevar la secretaría corporativa de la sociedad.Revisar
    estrategia de respuesta y defensa jurídica en litigios, derechos de petición,
    tutelas y otras demandas, y asignación de firmas jurídicas externas.Atender y
    soportar legalmente en las adquisiciones de bienes y servicios de las compañías.Garantizar
    soporte legal de requerimientos de clientes internos y externos.'
  sentences:
  - Data Science.Data Science.Data Analysis.Use R to clean, analyze, and visualize
    data.. Navigate the entire data science pipeline from data acquisition to publication.
    . Use GitHub to manage data science projects.. Perform regression analysis, least
    squares and inference using regression models.
  - Fundraising and Development Foundations.Business.Business Strategy.Communication,
    Leadership and Management, Organizational Development, Planning, Strategy, Strategy
    and Operations, Decision Making, People Development, Prospecting and Qualification,
    Business Development, Writing
  - Interfacing with the Arduino.Physical Science and Engineering.Electrical Engineering.Internet
    Of Things, Computer Programming
- source_sentence: '#Reportando a Sales Manager ColombiaLograr un crecimiento sostenible
    de los ingresos mediante la negociación, cierre, implementación y cumplimiento
    de acuerdos con cuentas clave (usuario final y revendedor).Negociar importantes
    oportunidades rentables tanto con cuentas clave nuevas como existentes. Experiencia
    manejando varios países a nivel Latam.Gestionar una cartera de cuentas clave con
    ingresos totales de 2 a 3 millones de dólares.'
  sentences:
  - 'The Blues: Understanding and Performing an American Art Form.Arts and Humanities.Music
    and Art.Students will be able to describe the blues as an important musical form.
    . Students will be able to explain differences in jazz and other variations of
    the blues. '
  - Managing Employee Performance.Business.Business Essentials.Employee Relations,
    Human Resources, Leadership and Management, Organizational Development, People
    Development, People Management, Performance Management, Professional Development,
    Strategy and Operations, Training, Culture
  - Marketing on TikTok.Business.Marketing.Social Media, Marketing, Media Strategy
    & Planning, Strategy, Digital Marketing
- source_sentence: '#Reportando a la Dirección Comercial. Esta persona sera la responsable
    de velar por la gestión de las cuentas ya activas y consecución de nuevos clientes
    en el sector financiero. Su rol principal sera tomar la base instalada de clientes
    e incrementar el consumo de soluciones que desarrolla la compañía, contribuyendo
    de esta manera al incremento de ventas para la organización'
  sentences:
  - IBM Full Stack Software Developer.Information Technology.Cloud Computing.Master
    the most up-to-date practical skills and tools that full stack developers use
    in their daily roles. Learn how to deploy and scale applications using Cloud Native
    methodologies and tools such as Containers, Kubernetes, Microservices, and Serverless.
    Develop software with front-end development languages and tools such as HTML,
    CSS, JavaScript, React, and Bootstrap. Build your GitHub portfolio by applying
    your skills to multiple labs and hands-on projects, including a capstone
  - 'Strategising: Management for Global Competitive Advantage.Business.Business Strategy.Analyse
    how technology and innovation can disrupt and reshape your organisation. Evaluate
    the different ways supply chains can effectively meet your customer''s demands  .
    Understand the different  strategies that your organisation can implement in order
    to remain competitive. Develop your understanding of how organisations can make
    positive contributions to society while effectively maintaining their bottom line'
  - Scripting with Python and SQL for Data Engineering.Data Science.Data Analysis.Extract
    data from different sources and map it to Python data structures.. Design Scripts
    to connect and query a SQL database from within Python.. Apply scraping techniques
    to read and extract data from a website.
- source_sentence: la posición de Ejecutivo Comercial Ingeniero Agrónomo Zootecnista
    deberá:* Hacer la apertura de mercado en la zona de Caldas.* Hacer las visitas
    comerciales a los diferentes clientes.
  sentences:
  - IBM Full-Stack JavaScript Developer.Computer Science.Software Development.Master
    the full-stack development languages, frameworks, tools, and technologies to develop
    job-ready skills valued by employers.. Write, deploy, and scale cloud-native back-end
    applications using Node, NoSQL databases, containers, microservices, and serverless..
    Develop websites and front-end software using HTML, CSS, JavaScript, and React..
    Employ DevOps practices and Agile methodologies to continuously build and deploy
    software using CI/CD tools.
  - 'Data Science with Databricks for Data Analysts.Data Science.Data Analysis.Discover
    how Databricks and Apache Spark simplify big data processing and optimize data
    analysis. . Frame business problems for data science and machine learning to make
    the most out of big data analytic workflows.. Solve real-world business problems
    quickly using Databricks to power the most popular data science techniques. '
  - 'Power System: Generation, Transmission and Protection.Physical Science and Engineering.Electrical
    Engineering.Overview of generators and auxiliary system, electrical aspects in
    a thermal power plant (balance of plants) and related power plant control system.
    Indian grid scenario, transmission line parameters with real case study, modelling
    of transmission line parameters using MATLAB. Modern Trends in Electrical Design
    of EHV, modelling of transmission lines, mechanical design of AC transmission
    line. Protection system from generation, transmission to distribution including
    switchgear practical aspects and Gas Insulated Substations'
---

# SentenceTransformer based on saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision a73bbb48c69aae3d4ddfec208a2b666c7f5978c8 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU3-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
    'la posición de Ejecutivo Comercial Ingeniero Agrónomo Zootecnista deberá:* Hacer la apertura de mercado en la zona de Caldas.* Hacer las visitas comerciales a los diferentes clientes.',
    'IBM Full-Stack JavaScript Developer.Computer Science.Software Development.Master the full-stack development languages, frameworks, tools, and technologies to develop job-ready skills valued by employers.. Write, deploy, and scale cloud-native back-end applications using Node, NoSQL databases, containers, microservices, and serverless.. Develop websites and front-end software using HTML, CSS, JavaScript, and React.. Employ DevOps practices and Agile methodologies to continuously build and deploy software using CI/CD tools.',
    'Data Science with Databricks for Data Analysts.Data Science.Data Analysis.Discover how Databricks and Apache Spark simplify big data processing and optimize data analysis. . Frame business problems for data science and machine learning to make the most out of big data analytic workflows.. Solve real-world business problems quickly using Databricks to power the most popular data science techniques. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 503 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                           | label                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              | int                                                               |
  | details | <ul><li>min: 5 tokens</li><li>mean: 87.62 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 64.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~73.76%</li><li>1: ~7.75%</li><li>2: ~18.49%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                     | sentence2                                                                                                                                                                                                                                                                                                                                                             | label          |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Ingenierio electrónico especializado en la implementación de modelos físicos. Experiencia en C++.</code>                                                                                                                                                                | <code>C++ Programming for Unreal Game Development.Computer Science.Software Development.Computer Programming, C Programming Language Family, Computer Programming Tools, Programming Principles</code>                                                                                                                                                                | <code>0</code> |
  | <code>Analista de datos con años de experiencia. Gran interés hacia el Big Data.</code>                                                                                                                                                                                       | <code>Data Literacy: Exploring and Visualizing Data.Data Science.Data Analysis.Data Analysis, Data Management, Data Visualization, Data Visualization Software, Interactive Data Visualization, SAS (Software), Statistical Visualization, Business Analysis, Data Analysis Software, Exploratory Data Analysis, Statistical Analysis, Statistical Programming</code> | <code>0</code> |
  | <code>Buscamos profesional en profesional Economía, Administración de empresas, Finanzas con MBA. Mínimo 8 años de experiencia en finanzas corporativas, liderando procesos de levantamiento de deuda, liderando equipos multidisciplinarios. Nivel avanzado de inglés</code> | <code>Advanced Data Modeling.Information Technology.Data Management.Deploy basic data modeling skills and navigate modern storage options for a data warehouse.. Demonstrate data modeling skills within a real-world project environment.</code>                                                                                                                     | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->