File size: 22,252 Bytes
dba0abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
---
base_model: saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:503
- loss:SoftmaxLoss
widget:
- source_sentence: '#La posición de Ingeniero QA Manual deberá:Priorización de la
ejecución de pruebas.Experiencia en la ejecución de pruebas manuales y en la documentación
de resultados.Proponer la estrategia de automatización de pruebas y las mejoras
a los procesos de automatización.Manejo de plataformas como Atlassian Jira, Atlassian
Confluence y GitLab.Conocimiento en motores de bases de datos y lenguajes de programación
como .NET, Java, PHP y Python.'
sentences:
- 'Streamlined Project Management with Trello: AI Integration.Business.Business
Essentials.Be able to Initialize and Structure a Go-To-Market Plan Using Trello
and AI Tools. Be able to Generate and Organize GTM Strategies Using ChatGPT and
Trello. Be able to Enhance GTM Plan Content and Workflow Efficiency with Trello’s
AI Tools'
- 'Microsoft Power BI Data Analyst.Information Technology.Security.Learn to use
Power BI to connect to data sources and transform them into meaningful insights. .
Prepare Excel data for analysis in Power BI using the most common formulas and
functions in a worksheet. . Learn to use the visualization and report capabilities
of Power BI to create compelling reports and dashboards. . Demonstrate your new
skills with a capstone project and prepare for the industry-recognized Microsoft
PL-300 Certification exam. '
- Getting Started in GIMP.Computer Science.Design and Product.Become Familiar with
Using GIMP and GIMPs User Interface. Use Crop and Text Tools. Basic Color Correction
Techniques
- source_sentence: '#La posición de Gerente Jurídico deberá:Apoyar al negocio en la
elaboración y revisión y/o negociación de contratos, así como brindar la asesoría
y soporte legal en las etapas precontractuales y postcontractuales.Asesorar a
la Gerencia General en diversos temas, incluyendo integraciones empresariales.Participar
activamente en la toma de decisiones estratégicas para la operación local y en
diversos temas en los países a cargo.Asesorar asuntos legales de propiedad intelectual
tales como, registros de marcas, patentes y permisos para uso de sustancias y
equipos.Fungir como Representante Legal, Apoderado General y Oficial de Cumplimiento
de todas las compañías en los países a cargo.Representación de los accionistas
extranjeros en juntas y asambleas y/o llevar la secretaría corporativa de la sociedad.Revisar
estrategia de respuesta y defensa jurídica en litigios, derechos de petición,
tutelas y otras demandas, y asignación de firmas jurídicas externas.Atender y
soportar legalmente en las adquisiciones de bienes y servicios de las compañías.Garantizar
soporte legal de requerimientos de clientes internos y externos.'
sentences:
- Data Science.Data Science.Data Analysis.Use R to clean, analyze, and visualize
data.. Navigate the entire data science pipeline from data acquisition to publication.
. Use GitHub to manage data science projects.. Perform regression analysis, least
squares and inference using regression models.
- Fundraising and Development Foundations.Business.Business Strategy.Communication,
Leadership and Management, Organizational Development, Planning, Strategy, Strategy
and Operations, Decision Making, People Development, Prospecting and Qualification,
Business Development, Writing
- Interfacing with the Arduino.Physical Science and Engineering.Electrical Engineering.Internet
Of Things, Computer Programming
- source_sentence: '#Reportando a Sales Manager ColombiaLograr un crecimiento sostenible
de los ingresos mediante la negociación, cierre, implementación y cumplimiento
de acuerdos con cuentas clave (usuario final y revendedor).Negociar importantes
oportunidades rentables tanto con cuentas clave nuevas como existentes. Experiencia
manejando varios países a nivel Latam.Gestionar una cartera de cuentas clave con
ingresos totales de 2 a 3 millones de dólares.'
sentences:
- 'The Blues: Understanding and Performing an American Art Form.Arts and Humanities.Music
and Art.Students will be able to describe the blues as an important musical form.
. Students will be able to explain differences in jazz and other variations of
the blues. '
- Managing Employee Performance.Business.Business Essentials.Employee Relations,
Human Resources, Leadership and Management, Organizational Development, People
Development, People Management, Performance Management, Professional Development,
Strategy and Operations, Training, Culture
- Marketing on TikTok.Business.Marketing.Social Media, Marketing, Media Strategy
& Planning, Strategy, Digital Marketing
- source_sentence: '#Reportando a la Dirección Comercial. Esta persona sera la responsable
de velar por la gestión de las cuentas ya activas y consecución de nuevos clientes
en el sector financiero. Su rol principal sera tomar la base instalada de clientes
e incrementar el consumo de soluciones que desarrolla la compañía, contribuyendo
de esta manera al incremento de ventas para la organización'
sentences:
- IBM Full Stack Software Developer.Information Technology.Cloud Computing.Master
the most up-to-date practical skills and tools that full stack developers use
in their daily roles. Learn how to deploy and scale applications using Cloud Native
methodologies and tools such as Containers, Kubernetes, Microservices, and Serverless.
Develop software with front-end development languages and tools such as HTML,
CSS, JavaScript, React, and Bootstrap. Build your GitHub portfolio by applying
your skills to multiple labs and hands-on projects, including a capstone
- 'Strategising: Management for Global Competitive Advantage.Business.Business Strategy.Analyse
how technology and innovation can disrupt and reshape your organisation. Evaluate
the different ways supply chains can effectively meet your customer''s demands .
Understand the different strategies that your organisation can implement in order
to remain competitive. Develop your understanding of how organisations can make
positive contributions to society while effectively maintaining their bottom line'
- Scripting with Python and SQL for Data Engineering.Data Science.Data Analysis.Extract
data from different sources and map it to Python data structures.. Design Scripts
to connect and query a SQL database from within Python.. Apply scraping techniques
to read and extract data from a website.
- source_sentence: la posición de Ejecutivo Comercial Ingeniero Agrónomo Zootecnista
deberá:* Hacer la apertura de mercado en la zona de Caldas.* Hacer las visitas
comerciales a los diferentes clientes.
sentences:
- IBM Full-Stack JavaScript Developer.Computer Science.Software Development.Master
the full-stack development languages, frameworks, tools, and technologies to develop
job-ready skills valued by employers.. Write, deploy, and scale cloud-native back-end
applications using Node, NoSQL databases, containers, microservices, and serverless..
Develop websites and front-end software using HTML, CSS, JavaScript, and React..
Employ DevOps practices and Agile methodologies to continuously build and deploy
software using CI/CD tools.
- 'Data Science with Databricks for Data Analysts.Data Science.Data Analysis.Discover
how Databricks and Apache Spark simplify big data processing and optimize data
analysis. . Frame business problems for data science and machine learning to make
the most out of big data analytic workflows.. Solve real-world business problems
quickly using Databricks to power the most popular data science techniques. '
- 'Power System: Generation, Transmission and Protection.Physical Science and Engineering.Electrical
Engineering.Overview of generators and auxiliary system, electrical aspects in
a thermal power plant (balance of plants) and related power plant control system.
Indian grid scenario, transmission line parameters with real case study, modelling
of transmission line parameters using MATLAB. Modern Trends in Electrical Design
of EHV, modelling of transmission lines, mechanical design of AC transmission
line. Protection system from generation, transmission to distribution including
switchgear practical aspects and Gas Insulated Substations'
---
# SentenceTransformer based on saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision a73bbb48c69aae3d4ddfec208a2b666c7f5978c8 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU3-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'la posición de Ejecutivo Comercial Ingeniero Agrónomo Zootecnista deberá:* Hacer la apertura de mercado en la zona de Caldas.* Hacer las visitas comerciales a los diferentes clientes.',
'IBM Full-Stack JavaScript Developer.Computer Science.Software Development.Master the full-stack development languages, frameworks, tools, and technologies to develop job-ready skills valued by employers.. Write, deploy, and scale cloud-native back-end applications using Node, NoSQL databases, containers, microservices, and serverless.. Develop websites and front-end software using HTML, CSS, JavaScript, and React.. Employ DevOps practices and Agile methodologies to continuously build and deploy software using CI/CD tools.',
'Data Science with Databricks for Data Analysts.Data Science.Data Analysis.Discover how Databricks and Apache Spark simplify big data processing and optimize data analysis. . Frame business problems for data science and machine learning to make the most out of big data analytic workflows.. Solve real-world business problems quickly using Databricks to power the most popular data science techniques. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 503 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 87.62 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 64.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~73.76%</li><li>1: ~7.75%</li><li>2: ~18.49%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Ingenierio electrónico especializado en la implementación de modelos físicos. Experiencia en C++.</code> | <code>C++ Programming for Unreal Game Development.Computer Science.Software Development.Computer Programming, C Programming Language Family, Computer Programming Tools, Programming Principles</code> | <code>0</code> |
| <code>Analista de datos con años de experiencia. Gran interés hacia el Big Data.</code> | <code>Data Literacy: Exploring and Visualizing Data.Data Science.Data Analysis.Data Analysis, Data Management, Data Visualization, Data Visualization Software, Interactive Data Visualization, SAS (Software), Statistical Visualization, Business Analysis, Data Analysis Software, Exploratory Data Analysis, Statistical Analysis, Statistical Programming</code> | <code>0</code> |
| <code>Buscamos profesional en profesional Economía, Administración de empresas, Finanzas con MBA. Mínimo 8 años de experiencia en finanzas corporativas, liderando procesos de levantamiento de deuda, liderando equipos multidisciplinarios. Nivel avanzado de inglés</code> | <code>Advanced Data Modeling.Information Technology.Data Management.Deploy basic data modeling skills and navigate modern storage options for a data warehouse.. Demonstrate data modeling skills within a real-world project environment.</code> | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |