File size: 2,574 Bytes
5846b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3d3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5846b0f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
base_model: google/gemma-7b
---

# Uploaded  model

- **Developed by:** saucam
- **License:** apache-2.0
- **Finetuned from model :** google/gemma-7b

This is a finetuned version of gemma-7b on sarvamai/samvaad-hi-v1 hindi dataset using chatml format.

## Inference

We can use unsloth for fast inference
```
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
from unsloth.chat_templates import get_chat_template

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "saucam/gemma-samvaad-7b", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = 2048,
    dtype = None,
    load_in_4bit = False,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

tokenizer = get_chat_template(
    tokenizer,
    chat_template = "chatml",
    map_eos_token = True, # Maps <|im_end|> to </s> instead
)

FastLanguageModel.for_inference(model) # Enable native 2x faster inference

messages = [
    {"role": "user", "content": "(9+1)+(5+0). इसे 3 चरणों में हल करें."},
]
inputs = tokenizer.apply_chat_template(
    messages,
    tokenize = True,
    add_generation_prompt = True, # Must add for generation
    return_tensors = "pt",
).to("cuda")

outputs = model.generate(input_ids = inputs, max_new_tokens = 512, use_cache = True)
out = tokenizer.batch_decode(outputs)
print(out)
```

```
['<bos><|im_start|>user\n(9+1)+(5+0). इसे 3 चरणों में हल करें.<|im_end|>\n
<|im_start|>assistant\n(9+1)+(5+0) को 3 चरणों में हल करने के लिए, हम इसे छोटे भागों में विभाजित कर सकते हैं। पहले चरण में, हम 9 को 1 से जोड़ते हैं, जो 10 देता है। दूसरे चरण में, हम 5 को 0 से जोड़ते हैं, जो 5 देता है। तीसरे चरण में, हम 10 को 5 से जोड़ते हैं, जो 15 देता है। इसलिए, (9+1)+(5+0) का परिणाम 15 है।<|im_end|>
```

This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)