sepidmnorozy commited on
Commit
5a618f7
·
1 Parent(s): 04d7d08

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: sentiment-10Epochs
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # sentiment-10Epochs
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7030
23
+ - Accuracy: 0.8603
24
+ - F1: 0.8585
25
+ - Precision: 0.8699
26
+ - Recall: 0.8473
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.3645 | 1.0 | 7088 | 0.4315 | 0.8603 | 0.8466 | 0.9386 | 0.7711 |
58
+ | 0.374 | 2.0 | 14176 | 0.4015 | 0.8713 | 0.8648 | 0.9105 | 0.8235 |
59
+ | 0.3363 | 3.0 | 21264 | 0.4772 | 0.8705 | 0.8615 | 0.9256 | 0.8057 |
60
+ | 0.3131 | 4.0 | 28352 | 0.4579 | 0.8702 | 0.8650 | 0.9007 | 0.8321 |
61
+ | 0.3097 | 5.0 | 35440 | 0.4160 | 0.8721 | 0.8663 | 0.9069 | 0.8292 |
62
+ | 0.2921 | 6.0 | 42528 | 0.4638 | 0.8673 | 0.8630 | 0.8917 | 0.8362 |
63
+ | 0.2725 | 7.0 | 49616 | 0.5183 | 0.8654 | 0.8602 | 0.8947 | 0.8283 |
64
+ | 0.2481 | 8.0 | 56704 | 0.5846 | 0.8649 | 0.8624 | 0.8787 | 0.8467 |
65
+ | 0.192 | 9.0 | 63792 | 0.6481 | 0.8610 | 0.8596 | 0.8680 | 0.8514 |
66
+ | 0.1945 | 10.0 | 70880 | 0.7030 | 0.8603 | 0.8585 | 0.8699 | 0.8473 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.18.0
72
+ - Pytorch 1.10.0
73
+ - Datasets 2.0.0
74
+ - Tokenizers 0.11.6