IndicF5 / model.py
shethjenil's picture
Upload folder using huggingface_hub
e0948eb verified
import sys
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from transformers import PreTrainedModel, PretrainedConfig, AutoConfig
import torch
import numpy as np
from f5_tts.infer.utils_infer import (
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
)
from f5_tts.model import DiT
import soundfile as sf
import io
from pydub import AudioSegment, silence
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
class INF5Config(PretrainedConfig):
model_type = "inf5"
def __init__(self, ckpt_path: str = "checkpoints/model_best.pt", vocab_path: str = "checkpoints/vocab.txt",
speed: float = 1.0, remove_sil: bool = True, **kwargs):
super().__init__(**kwargs)
self.ckpt_path = ckpt_path
self.vocab_path = vocab_path
self.speed = speed
self.remove_sil = remove_sil
class INF5Model(PreTrainedModel):
config_class = INF5Config
def __init__(self, config):
super().__init__(config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load vocoder
self.vocoder = torch.compile(load_vocoder(vocoder_name="vocos", is_local=False, device=device))
# Download and load model weights
# safetensors_path = hf_hub_download(config.name_or_path, filename="model.safetensors")
# print(f"Loading model weights from {safetensors_path} (safetensors)...")
# state_dict = load_file(safetensors_path, device=str(device))
# Download vocab.txt from HF Hub
vocab_path = hf_hub_download(config.name_or_path, filename="checkpoints/vocab.txt")
self.ema_model = torch.compile(load_model(
DiT,
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
mel_spec_type="vocos",
vocab_file=vocab_path,
device=device
)
)
# # Load state dict into model
# self.ema_model.load_state_dict(state_dict, strict=False)
def forward(self, text: str, ref_audio_path: str, ref_text: str):
"""
Generate speech given a reference audio & text input.
Args:
text (str): The text to be synthesized.
ref_audio_path (str): Path to the reference audio file.
ref_text (str): The reference text.
Returns:
np.array: Generated waveform.
"""
if not os.path.exists(ref_audio_path):
raise FileNotFoundError(f"Reference audio file {ref_audio_path} not found.")
# Load reference audio & text
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_path, ref_text)
self.ema_model.to(self.device)
self.vocoder.to(self.device)
# Perform inference
audio, final_sample_rate, _ = infer_process(
ref_audio,
ref_text,
text,
self.ema_model,
self.vocoder,
mel_spec_type="vocos",
speed=self.config.speed,
device=self.device,
)
# Convert to pydub format and remove silence if needed
buffer = io.BytesIO()
sf.write(buffer, audio, samplerate=24000, format="WAV")
buffer.seek(0)
audio_segment = AudioSegment.from_file(buffer, format="wav")
if self.config.remove_sil:
non_silent_segs = silence.split_on_silence(
audio_segment,
min_silence_len=1000,
silence_thresh=-50,
keep_silence=500,
seek_step=10,
)
non_silent_wave = sum(non_silent_segs, AudioSegment.silent(duration=0))
audio_segment = non_silent_wave
# Normalize loudness
target_dBFS = -20.0
change_in_dBFS = target_dBFS - audio_segment.dBFS
audio_segment = audio_segment.apply_gain(change_in_dBFS)
return np.array(audio_segment.get_array_of_samples())
if __name__ == '__main__':
model = INF5Model(INF5Config(ckpt_path="checkpoints/model_best.pt", vocab_path="checkpoints/vocab.txt"))
model.save_pretrained("INF5")
model.config.save_pretrained("INF5")
import numpy as np
import soundfile as sf
from transformers import AutoConfig, AutoModel
AutoConfig.register("inf5", INF5Config)
AutoModel.register(INF5Config, INF5Model)
model = AutoModel.from_pretrained("INF5")
audio = model("नमस्ते! संगीत की तरह जीवन भी खूबसूरत होता है, बस इसे सही ताल में जीना आना चाहिए.",
ref_audio_path="prompts/PAN_F_HAPPY_00001.wav",
ref_text="भਹੰਪੀ ਵਿੱਚ ਸਮਾਰਕਾਂ ਦੇ ਭਵਨ ਨਿਰਮਾਣ ਕਲਾ ਦੇ ਵੇਰਵੇ ਗੁੰਝਲਦਾਰ ਅਤੇ ਹੈਰਾਨ ਕਰਨ ਵਾਲੇ ਹਨ, ਜੋ ਮੈਨੂੰ ਖੁਸ਼ ਕਰਦੇ ਹਨ।")
if audio.dtype == np.int16:
audio = audio.astype(np.float32) / 32768.0
sf.write("samples/namaste.wav", np.array(audio, dtype=np.float32), samplerate=24000)
from huggingface_hub import HfApi
repo_id = "svp19/INF5" # Change to your HF repo
# Upload model directory to HF
api = HfApi()
api.upload_folder(
folder_path="INF5",
repo_id=repo_id,
repo_type="model"
)
print(f"Model pushed to https://huggingface.co/{repo_id} 🚀")
print("Verify Upload")
from transformers import AutoModel
model = AutoModel.from_pretrained(repo_id)
print("Success")