Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.1
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
datasets:
|
7 |
+
- allenai/RLVR-MATH
|
8 |
+
base_model:
|
9 |
+
- allenai/Llama-3.1-Tulu-3-405B
|
10 |
+
tags:
|
11 |
+
- quant
|
12 |
+
---
|
13 |
+
|
14 |
+
This is an [llmcompressor](https://github.com/vllm-project/llm-compressor) v0.4.0 [FP8 Dynamic](https://github.com/vllm-project/llm-compressor/tree/main/examples/quantization_w8a8_fp8) quant.
|
15 |
+
|
16 |
+
You can refer to [CPU offloading example](https://github.com/vllm-project/llm-compressor/tree/main/examples/big_models_with_accelerate) but for quanting with an H100 node, we used this setup to avoid OOM errors:
|
17 |
+
|
18 |
+
```
|
19 |
+
config = AutoConfig.from_pretrained(model_name)
|
20 |
+
with init_empty_weights():
|
21 |
+
model = AutoModelForCausalLM.from_config(config)
|
22 |
+
|
23 |
+
max_memory = {
|
24 |
+
0: "60GiB",
|
25 |
+
1: "60GiB",
|
26 |
+
2: "60GiB",
|
27 |
+
3: "60GiB",
|
28 |
+
4: "60GiB",
|
29 |
+
5: "60GiB",
|
30 |
+
6: "60GiB",
|
31 |
+
7: "60GiB",
|
32 |
+
"cpu": "1500GiB",
|
33 |
+
}
|
34 |
+
|
35 |
+
device_map = infer_auto_device_map(
|
36 |
+
model,
|
37 |
+
max_memory=max_memory,
|
38 |
+
no_split_module_classes=["LlamaDecoderLayer"],
|
39 |
+
)
|
40 |
+
```
|
41 |
+
|
42 |
+
Original model here: https://huggingface.co/allenai/Llama-3.1-Tulu-3-405B
|