---
license: apache-2.0
tags:
- merge
- hindi
- english
- Llama2
- ai4bharat/Airavata
- BhabhaAI/Gajendra-v0.1
model-index:
- name: yuj-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 45.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shuvom/yuj-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 70.1
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shuvom/yuj-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 43.78
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shuvom/yuj-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.69
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shuvom/yuj-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 69.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shuvom/yuj-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 4.78
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shuvom/yuj-v1
      name: Open LLM Leaderboard
---

# The Model yuj-v1:

The yuj-v1 model is a blend of advanced models strategically crafted to enhance Hindi Language Models (LLMs) effectively and democratically. Its primary goals include catalyzing the development of Hindi and its communities, making significant contributions to linguistic knowledge. The term "yuj," from Sanskrit, signifies fundamental unity, highlighting the integration of sophisticated technologies to improve the language experience for users in the Hindi-speaking community.

Official GGUF version: [shuvom/yuj-v1-GGUF](https://huggingface.co/shuvom/yuj-v1-GGUF)

Below are the model which are leverage to build this yuj-v1:
* [ai4bharat/Airavata](https://huggingface.co/ai4bharat/Airavata)
* [BhabhaAI/Gajendra-v0.1](https://huggingface.co/BhabhaAI/Gajendra-v0.1)

## ☄️Space to use it (yuj-v1 tryO):
<a target="_blank" href="https://shuvom-yuj-v1-tryo.hf.space">
  <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
</a>




## 💻 Usage:

First, you need to install some of below packages:

1. Bits and bytes
```python
!pip install bitsandbytes
```
2. Accelerate (to install the latest version)
```python
!pip install git+https://github.com/huggingface/accelerate.git
```
3. Usage
```python
# Usage
import torch

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

# load the model in 4-bit quantization
tokenizer = AutoTokenizer.from_pretrained("shuvom/yuj-v1")
model = AutoModelForCausalLM.from_pretrained("shuvom/yuj-v1",torch_dtype=torch.bfloat16,load_in_4bit=True)

prompt = "युज शीर्ष द्विभाषी मॉडल में से एक है"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=65)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```
4. Output
```python
युज शीर्ष द्विभाषी मॉडल में से एक है। यह एक उत्पादक मॉडल है जो एक साथ एक ट्रांसफॉर्मर और एक आत्म-ध्यान तंत्रिका नेटवर्क को जोड़ता है। यह एक ट्रांसफॉर्मर वास्तुकला का उपयोग करता है जो एक ट्रांसफॉर्मर मॉडल की तुलना में बहुत अधिक जटिल है।
```

## 🧩 Configuration

```yaml
models:
  - model: sarvamai/OpenHathi-7B-Hi-v0.1-Base
    # no parameters necessary for base model
  - model: ai4bharat/Airavata
    parameters:
      density: 0.5
      weight: 0.5
  - model: BhabhaAI/Gajendra-v0.1
    parameters:
      density: 0.5
      weight: 0.3
merge_method: ties
base_model: sarvamai/OpenHathi-7B-Hi-v0.1-Base
parameters:
  normalize: true
dtype: float16
```



# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_shuvom__yuj-v1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |45.97|
|AI2 Reasoning Challenge (25-Shot)|45.65|
|HellaSwag (10-Shot)              |70.10|
|MMLU (5-Shot)                    |43.78|
|TruthfulQA (0-shot)              |41.69|
|Winogrande (5-shot)              |69.85|
|GSM8k (5-shot)                   | 4.78|