|
--- |
|
base_model: facebook/mbart-large-cc25 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: es+no_processing |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# es+no_processing |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5874 |
|
- Smatch Precision: 74.08 |
|
- Smatch Recall: 76.84 |
|
- Smatch Fscore: 75.44 |
|
- Smatch Unparsable: 0 |
|
- Percent Not Recoverable: 0.2323 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:| |
|
| 0.3908 | 1.0 | 3477 | 1.4300 | 19.74 | 68.95 | 30.7 | 0 | 0.0 | |
|
| 0.256 | 2.0 | 6954 | 0.8998 | 27.75 | 70.61 | 39.85 | 1 | 0.0581 | |
|
| 0.0704 | 3.0 | 10431 | 0.8727 | 30.09 | 72.2 | 42.47 | 0 | 0.1161 | |
|
| 0.0586 | 4.0 | 13908 | 0.7774 | 37.1 | 74.93 | 49.62 | 0 | 0.1161 | |
|
| 0.1059 | 5.0 | 17385 | 0.6322 | 42.52 | 74.54 | 54.15 | 1 | 0.1161 | |
|
| 0.0424 | 6.0 | 20862 | 0.6090 | 47.13 | 76.21 | 58.25 | 0 | 0.0 | |
|
| 0.0139 | 7.0 | 24339 | 0.5768 | 48.3 | 77.31 | 59.46 | 0 | 0.0581 | |
|
| 0.08 | 8.0 | 27817 | 0.5608 | 55.74 | 77.16 | 64.72 | 0 | 0.1161 | |
|
| 0.0224 | 9.0 | 31294 | 0.5937 | 54.91 | 77.02 | 64.11 | 0 | 0.0581 | |
|
| 0.0757 | 10.0 | 34771 | 0.5588 | 59.53 | 77.47 | 67.32 | 0 | 0.0581 | |
|
| 0.0613 | 11.0 | 38248 | 0.5894 | 60.83 | 77.82 | 68.28 | 0 | 0.0581 | |
|
| 0.1045 | 12.0 | 41725 | 0.5847 | 61.23 | 77.17 | 68.28 | 0 | 0.1742 | |
|
| 0.012 | 13.0 | 45202 | 0.5588 | 65.61 | 77.47 | 71.05 | 0 | 0.0 | |
|
| 0.0591 | 14.0 | 48679 | 0.5609 | 66.51 | 77.86 | 71.74 | 0 | 0.0581 | |
|
| 0.0252 | 15.0 | 52156 | 0.5653 | 67.48 | 77.75 | 72.25 | 0 | 0.0 | |
|
| 0.0129 | 16.0 | 55634 | 0.5602 | 68.92 | 77.57 | 72.99 | 0 | 0.0 | |
|
| 0.0006 | 17.0 | 59111 | 0.5876 | 68.57 | 77.81 | 72.9 | 0 | 0.1742 | |
|
| 0.0182 | 18.0 | 62588 | 0.5951 | 68.97 | 77.96 | 73.19 | 0 | 0.1161 | |
|
| 0.018 | 19.0 | 66065 | 0.5865 | 70.63 | 77.68 | 73.98 | 0 | 0.0581 | |
|
| 0.0097 | 20.0 | 69542 | 0.6073 | 71.68 | 77.38 | 74.42 | 0 | 0.1161 | |
|
| 0.0021 | 21.0 | 73019 | 0.5984 | 72.25 | 77.92 | 74.98 | 0 | 0.0581 | |
|
| 0.0371 | 22.0 | 76496 | 0.5907 | 72.92 | 77.59 | 75.18 | 0 | 0.1742 | |
|
| 0.0382 | 23.0 | 79973 | 0.5928 | 73.06 | 77.49 | 75.21 | 0 | 0.1742 | |
|
| 0.0148 | 24.0 | 83451 | 0.5903 | 73.98 | 77.15 | 75.53 | 0 | 0.0581 | |
|
| 0.1326 | 25.0 | 86925 | 0.5874 | 74.08 | 76.84 | 75.44 | 0 | 0.2323 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|