Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- mr
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- generated_from_trainer
|
9 |
+
- robust-speech-event
|
10 |
+
datasets:
|
11 |
+
- common_voice
|
12 |
+
model-index:
|
13 |
+
- name: wav2vec2-large-xls-r-300m-mr
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
name: Speech Recognition
|
18 |
+
dataset:
|
19 |
+
type: mozilla-foundation/common_voice_8_0
|
20 |
+
name: Common Voice 8
|
21 |
+
args: mr
|
22 |
+
metrics:
|
23 |
+
- type: wer # Required. Example: wer
|
24 |
+
value: 31.57 # Required. Example: 20.90
|
25 |
+
name: Test WER # Optional. Example: Test WER
|
26 |
+
- name: Test CER
|
27 |
+
type: cer
|
28 |
+
value: 6.93
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
#
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.494580
|
39 |
+
- Wer: 0.395909
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 0.0001
|
59 |
+
- train_batch_size: 16
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 2
|
63 |
+
- total_train_batch_size: 32
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_steps: 1000
|
67 |
+
- num_epochs: 200.0
|
68 |
+
- mixed_precision_training: Native AMP
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
[12991/14200 9:46:02 < 54:32, 0.37 it/s, Epoch 182.96/200]
|
73 |
+
Step Training Loss Validation Loss Wer
|
74 |
+
400 3.794000 3.532227 1.000000
|
75 |
+
800 3.362400 3.359044 1.000000
|
76 |
+
1200 2.293900 1.011279 0.829924
|
77 |
+
1600 1.233000 0.502743 0.593662
|
78 |
+
2000 0.962600 0.412519 0.496992
|
79 |
+
2400 0.831800 0.402903 0.493783
|
80 |
+
2800 0.737000 0.389773 0.469314
|
81 |
+
3200 0.677100 0.373987 0.436021
|
82 |
+
3600 0.634400 0.383823 0.432010
|
83 |
+
4000 0.586000 0.375610 0.419575
|
84 |
+
4400 0.561000 0.387891 0.418371
|
85 |
+
4800 0.518500 0.386357 0.417569
|
86 |
+
5200 0.515300 0.415069 0.430004
|
87 |
+
5600 0.478100 0.399211 0.408744
|
88 |
+
6000 0.468100 0.424542 0.402327
|
89 |
+
6400 0.439400 0.430979 0.410750
|
90 |
+
6800 0.429600 0.427700 0.409146
|
91 |
+
7200 0.400300 0.451111 0.419976
|
92 |
+
7600 0.395100 0.463446 0.405134
|
93 |
+
8000 0.381800 0.454752 0.407942
|
94 |
+
8400 0.371500 0.461547 0.404733
|
95 |
+
8800 0.362500 0.461543 0.411151
|
96 |
+
9200 0.338200 0.468299 0.417168
|
97 |
+
9600 0.338800 0.480989 0.412355
|
98 |
+
10000 0.317600 0.475700 0.410750
|
99 |
+
10400 0.315100 0.478920 0.403530
|
100 |
+
10800 0.296200 0.480600 0.398315
|
101 |
+
11200 0.299000 0.477083 0.393502
|
102 |
+
11600 0.290000 0.465646 0.393903
|
103 |
+
12000 0.290900 0.490041 0.405937
|
104 |
+
12400 0.275600 0.489354 0.399519
|
105 |
+
12800 0.272600 0.494580 0.395909
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.17.0.dev0
|
111 |
+
- Pytorch 1.10.2+cu113
|
112 |
+
- Datasets 1.18.3.dev0
|
113 |
+
- Tokenizers 0.11.0
|