Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
model_path = "best.onnx"
|
10 |
+
|
11 |
+
|
12 |
+
def load_model(repo_id):
|
13 |
+
download_dir = snapshot_download(repo_id)
|
14 |
+
print(download_dir)
|
15 |
+
path = os.path.join(download_dir, "best.onnx")
|
16 |
+
print(path)
|
17 |
+
detection_model = YOLO(path, task='detect')
|
18 |
+
return detection_model
|
19 |
+
|
20 |
+
|
21 |
+
def process_image(pilimg):
|
22 |
+
source = pilimg
|
23 |
+
result = detection_model.predict(source, conf=0.5)
|
24 |
+
img_bgr = result[0].plot()
|
25 |
+
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image
|
26 |
+
return out_pilimg
|
27 |
+
|
28 |
+
|
29 |
+
def process_video(video):
|
30 |
+
cap = cv2.VideoCapture(video)
|
31 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
32 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
33 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
34 |
+
|
35 |
+
temp_dir = tempfile.mkdtemp()
|
36 |
+
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
|
37 |
+
output_path = os.path.join(temp_dir, "output.mp4")
|
38 |
+
output = cv2.VideoWriter(output_path, fourcc, fps, (int(width), int(height)))
|
39 |
+
|
40 |
+
# Loop through the video frames
|
41 |
+
while cap.isOpened():
|
42 |
+
# Read a frame from the video
|
43 |
+
success, frame = cap.read()
|
44 |
+
|
45 |
+
if success:
|
46 |
+
# Run YOLO inference on the frame on GPU Device 0
|
47 |
+
results = detection_model.predict(frame, conf=0.5)
|
48 |
+
|
49 |
+
# Visualize the results on the frame
|
50 |
+
annotated_frame = results[0].plot()
|
51 |
+
|
52 |
+
# Write the annotated frame
|
53 |
+
output.write(annotated_frame)
|
54 |
+
|
55 |
+
output.release()
|
56 |
+
output.release()
|
57 |
+
cv2.destroyAllWindows()
|
58 |
+
cv2.waitKey(1)
|
59 |
+
return output_path
|
60 |
+
|
61 |
+
|
62 |
+
REPO_ID = "1657866Y/grocery"
|
63 |
+
detection_model = load_model(REPO_ID)
|
64 |
+
|
65 |
+
# Create the interface for image upload
|
66 |
+
image_interface = gr.Interface(fn=process_image,
|
67 |
+
inputs=gr.Image(type="pil"),
|
68 |
+
outputs=gr.Image(type="pil"))
|
69 |
+
|
70 |
+
# Create the interface for video upload
|
71 |
+
video_interface = gr.Interface(fn=process_video,
|
72 |
+
inputs=gr.Video(label="Upload a Video"),
|
73 |
+
outputs="video")
|
74 |
+
|
75 |
+
# Use gr.Blocks to arrange components and launch the app
|
76 |
+
with gr.Blocks() as app:
|
77 |
+
# Add a header using Markdown
|
78 |
+
gr.Markdown("# Grocery? No wait!")
|
79 |
+
gr.Markdown("Choose whether to upload an image or a video below!")
|
80 |
+
|
81 |
+
# Add the tabbed interface
|
82 |
+
gr.TabbedInterface([image_interface, video_interface],
|
83 |
+
tab_names=["Image Upload", "Video Upload"])
|
84 |
+
|
85 |
+
|
86 |
+
# Launch the interface
|
87 |
+
app.launch()
|