File size: 1,658 Bytes
11bdc52
bd1bb19
 
 
bd6df67
11bdc52
79cf728
bd1bb19
 
 
 
 
 
 
 
bd6df67
bd1bb19
79cf728
bd1bb19
 
 
 
 
 
 
 
 
 
 
79cf728
bd1bb19
 
 
 
79cf728
bd1bb19
 
 
79cf728
 
bd1bb19
79cf728
bd1bb19
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaNextForConditionalGeneration
import spaces

# Load the processor and model
model_id = "llava-hf/llava-v1.6-mistral-7B-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaNextForConditionalGeneration.from_pretrained(
    model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

@spaces.GPU()
def llava_inference(image: Image.Image, prompt: str):
    # Format the input as a conversation
    conversation = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": prompt},
            ],
        },
    ]
    formatted_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
    inputs = processor(image, formatted_prompt, return_tensors="pt").to(device)
    # Generate response with a max token limit
    output_ids = model.generate(**inputs, max_new_tokens=100)
    output_text = processor.decode(output_ids[0], skip_special_tokens=True)
    return output_text

# Updated Gradio interface using new component syntax
demo = gr.Interface(
    fn=llava_inference,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
    ],
    outputs=gr.Text(label="Output Response"),
    title="LLaVA-1.6 Gradio Demo",
    description="Upload an image and enter a prompt. The model will generate a response using LLaVA-1.6.",
)

if __name__ == "__main__":
    demo.launch()