Abhikhade's picture
Update app.py
b712a46 verified
raw
history blame contribute delete
11.8 kB
import os
import logging
import json
import numpy as np
import faiss
from typing import List, Dict, Any
import gradio as gr
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI
from sentence_transformers import SentenceTransformer
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load API key from environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
raise ValueError("API key is missing. Set OPENAI_API_KEY in Hugging Face Secrets.")
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
# logging.debug(f"Using OpenAI API Key: {OPENAI_API_KEY[:5]}... (truncated for security)")
# Load FAISS index and chunked data
logging.debug("Loading FAISS index and chunked data...")
faiss_index = faiss.read_index("fp16_faiss_embeddings.index")
with open("all_chunked_data.json", "r") as f:
all_chunked_data = json.load(f)
logging.debug("FAISS index and chunked data loaded successfully.")
# Log random FAISS index for verification
random_index = np.random.randint(0, len(all_chunked_data))
logging.debug(f"Random FAISS index verification: {random_index}")
logging.debug(f"Corresponding chunk: {all_chunked_data[random_index]['text'][:100]}...")
logging.debug("Loading and configuring the embedding model...")
model = SentenceTransformer(
"dunzhang/stella_en_400M_v5",
trust_remote_code=True,
device="cpu",
config_kwargs={"use_memory_efficient_attention": False, "unpad_inputs": False}
)
logging.debug("Embedding model loaded successfully.")
# Test embedding model
import time
start_time = time.time()
logging.debug("Testing embedding model with a sample query...")
try:
query_embedding = model.encode(["test query"], show_progress_bar=False)
logging.debug(f"Embedding shape: {query_embedding.shape}")
logging.debug(f"Encoding took {time.time() - start_time:.2f} seconds")
except Exception as e:
logging.error(f"Error in embedding model test: {repr(e)}")
logging.error(f"Error details: {str(e)}")
import traceback
logging.error(f"Traceback: {traceback.format_exc()}")
# =======================
# Test Embeddings
# =======================
# Check the size of the FAISS index
# logging.debug(f"Number of embeddings in FAISS index: {faiss_index.ntotal}")
# logging.debug("")
# logging.debug("")
# # Retrieve embeddings from FAISS index (first 'k' embeddings)
# k = 2 # Number of embeddings to retrieve for verification
# stored_embeddings = np.zeros((k, 1024), dtype='float32') # 1024 is the embedding dimension
# faiss_index.reconstruct_n(0, k, stored_embeddings)
# # Compare with original embeddings (for example, the first 5 chunks)
# original_embeddings = model.encode(all_chunked_data[:k])
# # Print or compare both to check if they match
# logging.debug(f"Original Embeddings: {original_embeddings}")
# logging.debug(f"Stored Embeddings from FAISS index: {stored_embeddings}")
# logging.debug("")
# logging.debug("")
# # Query one of the chunks and check if FAISS returns the correct nearest neighbor
# query_embedding = model.encode([all_chunked_data[0]]) # Encode the first chunk
# D, I = faiss_index.search(np.array(query_embedding, dtype='float32'), k=1) # Search for top-1 match
# logging.debug(f"Distance: {D}, Index: {I}")
# # Check if the index corresponds to the same chunk
# logging.debug(f"Queried Chunk: {all_chunked_data[0]}")
# logging.debug(f"Matched Chunk: {all_chunked_data[I[0][0]]}")
# logging.debug("")
# logging.debug("")
# # Check the dimensionality of the FAISS index
# logging.debug(f"Dimension of embeddings in FAISS index: {faiss_index.d}")
CHUNK_SIZE = 400 # Roughly 400 words
CHUNK_OVERLAP = 50 # 50 words overlap
LLM_MODEL_NAME = "gpt-4o-mini" # Use latest model "o1-mini" much better but paid
LLM_TEMPERATURE = 0
TOP_K_RETRIEVAL = 3
# =======================
# Prompt Configuration
# =======================
def create_chat_prompt():
"""Create a chat prompt template for the AI model."""
chat_prompt_template = """
You are AQUABOTICA, the most advanced AI assistant specializing in aquaculture information.
Given a specific query, analyze the provided context extracted from academic documents, and also use your knowledge to generate a precise and concise answer. Also, If the the context contains some quantitative figures, do mention them.
Avoid LaTeX or complex math formatting, use plain text for maths.
**Query:** {question}
**Context:** {context}
**Response:**
"""
prompt = PromptTemplate(
template=chat_prompt_template,
input_variables=['context', 'question']
)
chat_prompt = ChatPromptTemplate(
input_variables=['context', 'question'],
metadata={
'lc_hub_owner': 'aquabotica',
'lc_hub_repo': 'aquaculture-research',
'lc_hub_commit_hash': 'a7b9c123abc12345f6789e123456def123456789' # Adjust commit hash if required
},
messages=[
HumanMessagePromptTemplate(prompt=prompt)
]
)
return chat_prompt
# =======================
# Metadata Formatting
# =======================
def format_metadata(chunk_id: int, all_chunked_data: List[Dict[str, Any]]) -> str:
"""Format metadata directly from the chunked data for a given chunk ID."""
chunk = all_chunked_data[chunk_id]
logging.debug(f"Chunk Retrieved: {chunk['text'][:100]}...") # Print first 100 characters
logging.debug(f"Metadata: {chunk['metadata']}")
metadata = chunk.get('metadata', {})
return f"Chunk {chunk_id}: {metadata}"
# =======================
# Language Model and Retrieval Setup
# =======================
def initialize_llm(model_name=LLM_MODEL_NAME, temperature=LLM_TEMPERATURE):
"""Initialize the language model."""
logging.debug("Initializing LLM model...")
return ChatOpenAI(model_name=model_name, temperature=temperature,openai_api_key=OPENAI_API_KEY)
def main(QUESTION=""):
logging.debug(f"Received user query: {QUESTION}")
chat_prompt = create_chat_prompt()
llm = initialize_llm()
# Query FAISS Index
try:
logging.debug("Encoding query for FAISS retrieval...")
query_embedding = model.encode([QUESTION])
logging.debug(f"Query embedding: {query_embedding[:5]}... (truncated)")
D, I = faiss_index.search(np.array(query_embedding, dtype='float32'), k=3)
relevant_chunk_ids = I[0]
logging.debug(f"Retrieved chunk IDs: {relevant_chunk_ids}, Distances: {D}")
relevant_chunks = [all_chunked_data[i]['text'] for i in relevant_chunk_ids]
####
####
context_display = "\n\n".join([
f"Chunk {idx+1}: {chunk[:]}...\nMetadata: {all_chunked_data[i]['metadata']}"
for idx, (i, chunk) in enumerate(zip(relevant_chunk_ids, relevant_chunks))
])
####
####
# context = "\n\n".join([f"Retrieved Chunk: {chunk}\nMetadata: {all_chunked_data[i]['metadata']}" for i, chunk in zip(relevant_chunk_ids, relevant_chunks)])
context = " ".join(relevant_chunks)
except Exception as e:
logging.error(f"Error during FAISS search: {e}")
return f"Error during FAISS search: {e}"
# Generate Response
try:
logging.debug("Formatting input for LLM...")
prompt_input = chat_prompt.format(context=context, question=QUESTION)
logging.debug(f"Formatted prompt: {prompt_input}")
result = llm.invoke(prompt_input)
answer = result.content if hasattr(result, 'content') else "No answer found."
logging.debug("LLM successfully generated response.")
except Exception as e:
logging.error(f"Error during LLM execution: {e}")
return f"Error during LLM execution: {e}"
return answer, context_display
# relevant_chunks_metadata = [format_metadata(chunk_id, all_chunked_data) for chunk_id in relevant_chunk_ids]
# return f"\n{answer}\n\n" + context
# return f"\n{answer}\n\n" + "\n"+ "\n".join(relevant_chunks_metadata)
# iface = gr.Interface(
# fn=main,
# inputs="text",
# outputs="text",
# title="Aquabotica: Aquaculture Chatbot",
# description="Ask questions about aquaculture and get answers based on scientific manuals."
# )
# if __name__ == "__main__":
# logging.debug("Launching Gradio UI...")
# iface.launch()
# # Updated CSS
# custom_css = """
# /* Style for labels across all components */
# .question-input label span,
# .solution-output label span,
# .metadata-output label span {
# font-size: 20px !important;
# font-weight: bold !important;
# }
# /* Style for the submit button */
# .submit-btn button {
# background-color: orange !important;
# color: black !important;
# font-weight: bold !important;
# }
# /* Preserve newlines and enable horizontal scrolling */
# .metadata-output textarea {
# white-space: pre !important;
# overflow-x: auto !important;
# padding: 8px !important;
# }
# """
# with gr.Blocks(css=custom_css) as demo:
# with gr.Column():
# question_input = gr.Textbox(
# label="Ask a Question relevant to provided Aquaculture documents",
# lines=2,
# placeholder="Enter your question here",
# elem_classes="question-input"
# )
# submit_btn = gr.Button("Submit", elem_classes="submit-btn")
# solution_output = gr.Textbox(
# label="Response",
# interactive=False,
# lines=5,
# elem_classes="solution-output" # Added missing class
# )
# retrieved_chunks = gr.Textbox(
# label="Retrieved Data",
# interactive=False,
# lines=5,
# elem_classes="metadata-output"
# )
# submit_btn.click(main, inputs=question_input, outputs=[solution_output, retrieved_chunks])
# demo.launch()
custom_css = """
/* Style for labels across all components */
.question-input label span,
.solution-output label span,
.metadata-output label span {
font-size: 20px !important;
font-weight: bold !important;
color: orange !important;
}
/* Correct style for the submit button */
.submit-btn button {
background-color: orange !important;
color: black !important;
font-weight: bold !important;
border: none !important;
border-radius: 8px !important;
padding: 10px 20px !important;
cursor: pointer !important;
}
/* Hover effect for submit button */
.submit-btn button:hover {
background-color: darkorange !important;
}
/* Preserve newlines and enable horizontal scrolling in retrieved documents */
.metadata-output textarea {
white-space: pre !important;
overflow-x: auto !important;
padding: 8px !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
with gr.Column():
question_input = gr.Textbox(
label="Ask a Question",
lines=2,
placeholder="Enter your question here",
elem_classes="question-input"
)
submit_btn = gr.Button(
"Submit",
elem_classes="submit-btn"
)
solution_output = gr.Textbox(
label="Response",
interactive=False,
lines=5,
elem_classes="solution-output"
)
retrieved_chunks = gr.Textbox(
label="Retrieved Data/Documents",
interactive=False,
lines=5,
elem_classes="metadata-output"
)
submit_btn.click(
main,
inputs=question_input,
outputs=[solution_output, retrieved_chunks]
)
demo.launch()