File size: 4,715 Bytes
ec46cee
 
 
 
 
 
 
 
 
 
 
50664b2
8d60ca3
ec46cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdf544
ec46cee
8d60ca3
ec46cee
8d60ca3
 
ec46cee
 
acdf544
ec46cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50664b2
ec46cee
50664b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec46cee
 
 
 
 
 
50664b2
ec46cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdf544
ec46cee
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone

import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from src.envs import API, MIN_TOKEN_COUNT


def check_model_card(repo_id: str) -> tuple[bool, str]:
    """Checks if the model card and license exist and have been filled"""
    try:
        card = ModelCard.load(repo_id)
    except huggingface_hub.utils.EntryNotFoundError:
        return False, "Please add a model card to your model to explain how you trained/fine-tuned it."

    # Enforce license metadata
    if card.data.license is None:
        if not ("license_name" in card.data and "license_link" in card.data):
            return False, (
                "License not found. Please add a license to your model card using the `license` metadata or a"
                " `license_name`/`license_link` pair."
            )

    # Enforce card content
    if len(card.text) < 200:
        return False, "Please add a description to your model card, it is too short."

    return True, ""

def is_model_on_hub(model_name: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
    """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
    model_info = API.model_info(model_name, revision="main")
    try:
        model_info = API.model_info(model_name)
        config = model_info.config
        if test_tokenizer:
            try:
                tk = AutoTokenizer.from_pretrained(model_name, revision="main", trust_remote_code=trust_remote_code, token=token)
            except ValueError as e:
                return (
                    False,
                    f"uses a tokenizer which is not in a transformers release: {e}",
                    None
                )
            except Exception as e:
                return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
        return True, None, config

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
            None
        )

    except Exception as e:
        return False, "was not found on hub!", None

def check_max_tokens(model_name):

    try:
        tk = AutoTokenizer.from_pretrained(model_name, revision="main", trust_remote_code=True)
        max_len = tk.model_max_length

        if max_len < MIN_TOKEN_COUNT:
            return (False, f"Token count too low: {max_len}")
        
        else:
            return (True, None)

    except Exception as e:
        return (False, "Error checking token count for model.")




def get_model_size(model_info: ModelInfo):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    size_factor = 8 if "gptq" in model_info.modelId.lower() else 1
    model_size = size_factor * model_size
    return model_size

def get_model_arch(model_info: ModelInfo):
    """Gets the model architecture from the configuration"""
    return model_info.config.get("architectures", "Unknown")

def already_submitted_models(requested_models_dir: str) -> set[str]:
    """Gather a list of already submitted models to avoid duplicates"""
    depth = 1
    file_names = []
    users_to_submission_dates = defaultdict(list)

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            for file in files:
                if not file.endswith(".json"):
                    continue
                with open(os.path.join(root, file), "r") as f:
                    info = json.load(f)
                    file_names.append(info['model'])

                    # Select organisation
                    if info["model"].count("/") == 0 or "submitted_time" not in info:
                        continue
                    organisation, _ = info["model"].split("/")
                    users_to_submission_dates[organisation].append(info["submitted_time"])

    return set(file_names), users_to_submission_dates