|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
import json |
|
import re |
|
import base64 |
|
from typing import Optional, Dict, List, Any |
|
import anthropic |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
class GAIAAgent: |
|
def __init__(self): |
|
print("Initializing GAIA Agent powered by Claude...") |
|
|
|
self.claude_key = os.environ.get("ANTHROPIC_API_KEY") |
|
if not self.claude_key: |
|
raise ValueError("ANTHROPIC_API_KEY not found in environment variables") |
|
|
|
|
|
self.client = anthropic.Anthropic(api_key=self.claude_key) |
|
|
|
|
|
self.api_url = DEFAULT_API_URL |
|
|
|
|
|
self.search_cache = {} |
|
self.file_cache = {} |
|
|
|
|
|
self.system_prompt = """ |
|
You are an AI assistant specially designed to answer questions from the GAIA benchmark with exceptional accuracy. |
|
The GAIA benchmark evaluates AI's ability to perform real-world tasks that require reasoning, web browsing, and tool use. |
|
|
|
Your goal is to provide the EXACT answer in the format requested by each question. GAIA uses exact matching for evaluation. |
|
|
|
Guidelines for GAIA answers: |
|
1. Provide ONLY the final answer, with NO explanations, reasoning, or additional text |
|
2. Format is critical - follow the instructions in the question precisely |
|
3. For comma-separated lists, provide "item1, item2, item3" with no quotes or extra punctuation |
|
4. For numeric answers, provide just the number without units unless specifically requested |
|
5. Maintain exact capitalization and spacing as requested in the question |
|
6. If asked to order items, follow the requested ordering precisely |
|
|
|
Examples of correct formatting: |
|
- If asked for fruits in alphabetical order: "apples, bananas, oranges" |
|
- If asked for a single word: "photosynthesis" |
|
- If asked for a number: "42" |
|
- If asked for a date in MM/DD/YY format: "05/04/25" |
|
|
|
Remember, your score depends on exact matching against the reference answer. |
|
""" |
|
|
|
def search_web(self, query: str) -> str: |
|
"""Improved web search function with caching""" |
|
if query in self.search_cache: |
|
print(f"Using cached search results for: {query}") |
|
return self.search_cache[query] |
|
|
|
print(f"Performing web search for: {query}") |
|
try: |
|
|
|
response = requests.get( |
|
"https://api.duckduckgo.com/", |
|
params={"q": query, "format": "json"}, |
|
timeout=10 |
|
) |
|
data = response.json() |
|
|
|
|
|
results = [] |
|
if data.get("AbstractText"): |
|
results.append(f"Abstract: {data['AbstractText']}") |
|
if data.get("RelatedTopics"): |
|
topics = data.get("RelatedTopics", []) |
|
for i, topic in enumerate(topics[:5]): |
|
if isinstance(topic, dict) and topic.get("Text"): |
|
results.append(f"Related Topic {i+1}: {topic['Text']}") |
|
|
|
result_text = "\n\n".join(results) if results else "No results found" |
|
|
|
|
|
|
|
|
|
|
|
self.search_cache[query] = result_text |
|
return result_text |
|
except Exception as e: |
|
print(f"Web search error: {e}") |
|
return f"Web search failed: {str(e)}" |
|
|
|
def fetch_file(self, task_id: str) -> Optional[Dict[str, Any]]: |
|
"""Fetches and processes a file associated with a task""" |
|
if task_id in self.file_cache: |
|
print(f"Using cached file for task: {task_id}") |
|
return self.file_cache[task_id] |
|
|
|
print(f"Fetching file for task: {task_id}") |
|
try: |
|
response = requests.get(f"{self.api_url}/files/{task_id}", timeout=15) |
|
|
|
if response.status_code == 200: |
|
file_content = response.content |
|
file_info = { |
|
"content": file_content, |
|
"content_type": response.headers.get("Content-Type", ""), |
|
"size": len(file_content) |
|
} |
|
|
|
|
|
content_type = file_info["content_type"].lower() |
|
|
|
if "image" in content_type: |
|
|
|
file_info["base64"] = base64.b64encode(file_content).decode('utf-8') |
|
file_info["type"] = "image" |
|
print(f"Processed image file ({file_info['size']} bytes)") |
|
elif "pdf" in content_type: |
|
|
|
file_info["type"] = "pdf" |
|
print(f"Detected PDF file ({file_info['size']} bytes)") |
|
elif "text" in content_type or "json" in content_type or "csv" in content_type: |
|
|
|
try: |
|
file_info["text"] = file_content.decode('utf-8') |
|
file_info["type"] = "text" |
|
print(f"Processed text file ({file_info['size']} bytes)") |
|
except UnicodeDecodeError: |
|
file_info["type"] = "binary" |
|
print(f"Could not decode text file ({file_info['size']} bytes)") |
|
else: |
|
file_info["type"] = "binary" |
|
print(f"Detected binary file ({file_info['size']} bytes, {content_type})") |
|
|
|
|
|
self.file_cache[task_id] = file_info |
|
return file_info |
|
else: |
|
print(f"Failed to fetch file, status code: {response.status_code}") |
|
print(f"Response: {response.text[:1000]}") |
|
return None |
|
except Exception as e: |
|
print(f"Error fetching file: {e}") |
|
return None |
|
|
|
def extract_answer(self, response_text: str) -> str: |
|
"""Extract just the final answer from Claude's response""" |
|
|
|
cleaned = re.sub(r'^(final answer|the answer is|answer|Here\'s the answer|response):?\s*', '', response_text, flags=re.IGNORECASE) |
|
|
|
|
|
cleaned = re.sub(r'\n.*?explain.*?$', '', cleaned, flags=re.IGNORECASE | re.DOTALL) |
|
|
|
|
|
lines = cleaned.strip().split('\n') |
|
if len(lines) > 1: |
|
first_line = lines[0].strip() |
|
|
|
if len(first_line) > 5 and not first_line.startswith('I ') and not first_line.startswith('The '): |
|
return first_line |
|
|
|
|
|
cleaned = cleaned.strip() |
|
if cleaned.startswith('"') and cleaned.endswith('"'): |
|
cleaned = cleaned[1:-1] |
|
|
|
return cleaned.strip() |
|
|
|
def process_question(self, question: str, task_id: str = None) -> Dict[str, Any]: |
|
"""Processes a question to extract relevant information and prepare for Claude""" |
|
question_info = { |
|
"original": question, |
|
"task_id": task_id, |
|
"has_file": False, |
|
"file_info": None, |
|
"contains_math": bool(re.search(r'calculate|compute|sum|average|mean|median|formula|equation', question, re.IGNORECASE)), |
|
"requires_list": bool(re.search(r'list|order|sequence|rank|items|elements|values', question, re.IGNORECASE)), |
|
"format_requirements": None |
|
} |
|
|
|
|
|
format_match = re.search(r'(format|in the format|formatted as|as a|in) ([^\.]+)', question, re.IGNORECASE) |
|
if format_match: |
|
question_info["format_requirements"] = format_match.group(2).strip() |
|
|
|
|
|
if task_id and self.fetch_file(task_id): |
|
question_info["has_file"] = True |
|
question_info["file_info"] = self.fetch_file(task_id) |
|
|
|
return question_info |
|
|
|
def __call__(self, question: str, task_id: str = None) -> str: |
|
"""Main method to process a question and return an answer""" |
|
if task_id is None: |
|
|
|
match = re.search(r'task[\s_-]?id:?\s*(\w+)', question, re.IGNORECASE) |
|
if match: |
|
task_id = match.group(1) |
|
|
|
print(f"Processing question for task_id: {task_id}") |
|
print(f"Question: {question[:100]}...") |
|
|
|
|
|
question_info = self.process_question(question, task_id) |
|
|
|
try: |
|
|
|
messages = [] |
|
|
|
|
|
user_content = [{ |
|
"type": "text", |
|
"text": f""" |
|
Question from GAIA benchmark: {question} |
|
|
|
Remember: |
|
1. Provide ONLY the final answer |
|
2. Format exactly as requested |
|
3. No explanations or reasoning |
|
""" |
|
}] |
|
|
|
|
|
web_results = self.search_web(question) |
|
if web_results: |
|
user_content.append({ |
|
"type": "text", |
|
"text": f""" |
|
Web search results related to this question: |
|
|
|
{web_results} |
|
""" |
|
}) |
|
|
|
|
|
if question_info["has_file"] and question_info["file_info"]: |
|
file_info = question_info["file_info"] |
|
|
|
if file_info["type"] == "image": |
|
|
|
user_content.append({ |
|
"type": "image", |
|
"source": { |
|
"type": "base64", |
|
"media_type": file_info["content_type"], |
|
"data": file_info["base64"] |
|
} |
|
}) |
|
|
|
user_content.append({ |
|
"type": "text", |
|
"text": "The above image is part of the question. Please analyze it carefully." |
|
}) |
|
elif file_info["type"] == "text" and "text" in file_info: |
|
|
|
user_content.append({ |
|
"type": "text", |
|
"text": f""" |
|
The question includes a text file with the following content: |
|
|
|
{file_info["text"][:4000]} # ограничиваем, чтобы не превысить лимиты токенов |
|
""" |
|
}) |
|
|
|
|
|
if question_info["format_requirements"]: |
|
user_content.append({ |
|
"type": "text", |
|
"text": f""" |
|
Important format requirement: {question_info["format_requirements"]} |
|
Make sure your answer follows this format EXACTLY. |
|
""" |
|
}) |
|
|
|
messages.append({ |
|
"role": "user", |
|
"content": user_content |
|
}) |
|
|
|
|
|
response = self.client.messages.create( |
|
model="claude-3-5-sonnet-20241022", |
|
system=self.system_prompt, |
|
messages=messages, |
|
temperature=0.1, |
|
max_tokens=4096 |
|
) |
|
|
|
|
|
raw_answer = response.content[0].text.strip() |
|
|
|
|
|
clean_answer = self.extract_answer(raw_answer) |
|
|
|
print(f"Raw answer: {raw_answer}") |
|
print(f"Clean answer: {clean_answer}") |
|
|
|
return clean_answer |
|
except Exception as e: |
|
print(f"Error in agent: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return f"Error processing question: {str(e)}" |
|
|
|
|
|
|
|
class BasicAgent(GAIAAgent): |
|
pass |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text, task_id) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# GAIA Benchmark Agent Evaluation") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
This agent uses Claude 3.5 Sonnet to solve GAIA benchmark tasks. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for GAIA Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |