Spaces:
Build error
Build error
Upload 4 files
Browse files- .gitattributes +1 -0
- IMDB_Dataset.csv +3 -0
- Notebook.ipynb +0 -0
- app.py +162 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
IMDB_Dataset.csv filter=lfs diff=lfs merge=lfs -text
|
IMDB_Dataset.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:707c8898a0883870cb896a1ed90f6468de200b84b3670534f0d796ef366ebdb0
|
3 |
+
size 12489628
|
Notebook.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import traceback
|
3 |
+
from groq import Groq
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.vectorstores import Pinecone as PineconeVectorStore
|
9 |
+
from pinecone import Pinecone
|
10 |
+
|
11 |
+
def initialize_recommendation_system():
|
12 |
+
try:
|
13 |
+
# Initialize Groq
|
14 |
+
groq_client = Groq(api_key=st.secrets["GROQ_API_KEY"])
|
15 |
+
|
16 |
+
# Initialize embeddings
|
17 |
+
embeddings = HuggingFaceEmbeddings(
|
18 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Initialize Pinecone
|
22 |
+
pc = Pinecone(api_key=st.secrets["PINECONE_API_KEY"])
|
23 |
+
|
24 |
+
# Get the index
|
25 |
+
index_name = "imdb-index"
|
26 |
+
index = pc.Index(index_name)
|
27 |
+
|
28 |
+
# Check index stats
|
29 |
+
index_stats = index.describe_index_stats()
|
30 |
+
|
31 |
+
# Initialize vector store
|
32 |
+
docsearch = PineconeVectorStore.from_existing_index(
|
33 |
+
index_name=index_name,
|
34 |
+
embedding=embeddings,
|
35 |
+
namespace=""
|
36 |
+
)
|
37 |
+
|
38 |
+
# Initialize LLM
|
39 |
+
llm = ChatGroq(
|
40 |
+
model_name="llama3-8b-8192",
|
41 |
+
api_key=st.secrets["GROQ_API_KEY"],
|
42 |
+
temperature=0
|
43 |
+
)
|
44 |
+
|
45 |
+
# Define prompt template
|
46 |
+
template = """You are a movie recommender system that helps users find movies that match their preferences.
|
47 |
+
Use the following pieces of context to answer the question at the end.
|
48 |
+
For each question, suggest three movies, with a short description of the plot and the reason why the user might like it.
|
49 |
+
Format your response in a clear, easy-to-read way with line breaks between movies.
|
50 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
51 |
+
|
52 |
+
{context}
|
53 |
+
|
54 |
+
Question: {question}
|
55 |
+
Your response:"""
|
56 |
+
|
57 |
+
PROMPT = PromptTemplate(
|
58 |
+
template=template, input_variables=["context", "question"]
|
59 |
+
)
|
60 |
+
|
61 |
+
# Create QA chain
|
62 |
+
qa_chain = RetrievalQA.from_chain_type(
|
63 |
+
llm=llm,
|
64 |
+
chain_type="stuff",
|
65 |
+
retriever=docsearch.as_retriever(search_kwargs={"k": 3}),
|
66 |
+
return_source_documents=True,
|
67 |
+
chain_type_kwargs={"prompt": PROMPT}
|
68 |
+
)
|
69 |
+
|
70 |
+
return qa_chain
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
st.error(f"Error initializing the recommendation system: {str(e)}")
|
74 |
+
st.error(traceback.format_exc())
|
75 |
+
return None
|
76 |
+
|
77 |
+
def get_recommendations(query, qa_chain):
|
78 |
+
try:
|
79 |
+
with st.spinner('🎬 Finding perfect movies for you...'):
|
80 |
+
st.write(f"Searching for query: {query}")
|
81 |
+
result = qa_chain.invoke({"query": query})
|
82 |
+
recommendations = result['result']
|
83 |
+
return recommendations
|
84 |
+
except Exception as e:
|
85 |
+
st.error(f"Error getting recommendations: {str(e)}")
|
86 |
+
st.error(traceback.format_exc())
|
87 |
+
return None
|
88 |
+
|
89 |
+
def main():
|
90 |
+
# Custom CSS to reduce margins
|
91 |
+
st.markdown("""
|
92 |
+
<style>
|
93 |
+
.block-container {
|
94 |
+
padding-left: 2rem !important;
|
95 |
+
padding-right: 2rem !important;
|
96 |
+
max-width: 95rem !important;
|
97 |
+
}
|
98 |
+
.stButton button {
|
99 |
+
width: 100%;
|
100 |
+
}
|
101 |
+
</style>
|
102 |
+
""", unsafe_allow_html=True)
|
103 |
+
|
104 |
+
# Initialize session state keys if they don't exist
|
105 |
+
if 'initialized' not in st.session_state:
|
106 |
+
st.session_state.initialized = False
|
107 |
+
|
108 |
+
# Header
|
109 |
+
st.title("🎬 Movie Recommendation System")
|
110 |
+
st.markdown("### Find your next favorite movie!")
|
111 |
+
|
112 |
+
# Initialize the system if not already done
|
113 |
+
if not st.session_state.initialized:
|
114 |
+
with st.spinner('Initializing recommendation system...'):
|
115 |
+
qa_chain = initialize_recommendation_system()
|
116 |
+
if qa_chain:
|
117 |
+
st.session_state.qa_chain = qa_chain
|
118 |
+
st.session_state.initialized = True
|
119 |
+
|
120 |
+
# Create columns for layout with adjusted ratios
|
121 |
+
col1, col2 = st.columns([3, 1]) # Changed ratio from [2, 1] to [3, 1] for better space utilization
|
122 |
+
|
123 |
+
with col1:
|
124 |
+
# Search input
|
125 |
+
query = st.text_input(
|
126 |
+
"What kind of movie are you looking for?",
|
127 |
+
placeholder="e.g., 'A sci-fi movie with time travel' or 'A romantic comedy set in New York'",
|
128 |
+
key="movie_query"
|
129 |
+
)
|
130 |
+
|
131 |
+
# Search button
|
132 |
+
if st.button("Get Recommendations 🔍", type="primary"):
|
133 |
+
if query:
|
134 |
+
recommendations = get_recommendations(query, st.session_state.qa_chain)
|
135 |
+
if recommendations:
|
136 |
+
# Process and extract movie details
|
137 |
+
recommendations_list = recommendations.strip().split('\n')
|
138 |
+
formatted_recommendations = []
|
139 |
+
for line in recommendations_list:
|
140 |
+
# Ensure movie names are detected and formatted
|
141 |
+
if "Movie:" in line or line.startswith("*"):
|
142 |
+
formatted_recommendations.append(f"**{line.strip()}**")
|
143 |
+
else:
|
144 |
+
formatted_recommendations.append(line.strip())
|
145 |
+
|
146 |
+
# Combine into a single formatted block
|
147 |
+
final_output = "\n\n".join(formatted_recommendations)
|
148 |
+
|
149 |
+
# Display recommendations in one box
|
150 |
+
st.markdown(f"""
|
151 |
+
<div style="border: 1px solid #ddd; border-radius: 8px; padding: 15px; margin-bottom: 15px; box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1);">
|
152 |
+
<h4>🎥 Movie Recommendations:</h4>
|
153 |
+
<p style="white-space: pre-line;">{final_output}</p>
|
154 |
+
</div>
|
155 |
+
""", unsafe_allow_html=True)
|
156 |
+
else:
|
157 |
+
st.warning("No recommendations found. Please try a different query.")
|
158 |
+
else:
|
159 |
+
st.warning("Please enter what kind of movie you're looking for!")
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.32.2
|
2 |
+
groq==0.4.3
|
3 |
+
langchain-groq==0.0.5
|
4 |
+
langchain==0.1.12
|
5 |
+
langchain-huggingface==0.0.9
|
6 |
+
langchain-community==0.0.28
|
7 |
+
pinecone-client==3.1.0
|
8 |
+
sentence-transformers==2.5.1
|