File size: 2,983 Bytes
6c39073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f16c455
53414b0
30972f9
f16c455
30972f9
f16c455
 
 
fd41edd
30972f9
 
 
 
8e5bf2a
 
fd41edd
 
 
 
 
 
 
 
 
 
 
 
c91a77d
fd41edd
a95975f
c91a77d
97369b6
fd41edd
 
30972f9
200d4a2
30972f9
 
 
 
 
fd41edd
 
 
 
 
 
 
30972f9
8e5bf2a
8869631
c91a77d
8e5bf2a
8869631
 
 
 
 
 
 
 
 
 
 
 
 
6c39073
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Set up the Gradio interface"""

import gradio as gr
from transformers import pipeline
from TTS.api import TTS

# Load pre-trained emotion detection model
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")

# Load TTS model
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")

# Emotion-specific settings for pitch and speed
emotion_settings = {
    "neutral": {"pitch": 1.0, "speed": 1.0},
    "joy": {"pitch": 1.3, "speed": 1.2},
    "sadness": {"pitch": 0.8, "speed": 0.9},
    "anger": {"pitch": 1.6, "speed": 1.4},
    "fear": {"pitch": 1.2, "speed": 0.95},
    "surprise": {"pitch": 1.5, "speed": 1.3},
    "disgust": {"pitch": 0.9, "speed": 0.95},
    "shame": {"pitch": 0.8, "speed": 0.85},
}

import librosa
import soundfile as sf

def adjust_audio_speed(audio_path, speed_factor):
    y, sr = librosa.load(audio_path)
    y_speeded = librosa.effects.time_stretch(y, speed_factor)
    sf.write(audio_path, y_speeded, sr)

def adjust_audio_pitch(audio_path, pitch_factor):
    y, sr = librosa.load(audio_path)
    y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor)
    sf.write(audio_path, y_shifted, sr)

def emotion_aware_tts_pipeline(input_text=None, file_input=None):
    try:
        # Get text from input or file
        if file_input:
            with open(file_input.name, 'r') as file:
                input_text = file.read()

        if input_text:
            # Detect emotion
            emotion_data = emotion_classifier(input_text)[0]
            emotion = emotion_data['label']
            confidence = emotion_data['score']

            # Adjust pitch and speed
            settings = emotion_settings.get(emotion.lower(), {"pitch": 1.0, "speed": 1.0})
            pitch = settings["pitch"]
            speed = settings["speed"]

            # Generate audio
            audio_path = "output.wav"
            tts_model.tts_to_file(text=input_text, file_path=audio_path)

            # Adjust pitch and speed using librosa
            if pitch != 1.0:
                adjust_audio_pitch(audio_path, pitch)
            if speed != 1.0:
                adjust_audio_speed(audio_path, speed)

            return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
        else:
            return "Please provide input text or file", None
    except Exception as e:
        return f"Error: {str(e)}", None

  

# Define Gradio interface
iface = gr.Interface(
    fn=emotion_aware_tts_pipeline,
    inputs=[
        gr.Textbox(label="Input Text", placeholder="Enter text here"),
        gr.File(label="Upload a Text File")
    ],
    outputs=[
        gr.Textbox(label="Detected Emotion"),
        gr.Audio(label="Generated Audio")
    ],
    title="Emotion-Aware Text-to-Speech",
    description="Input text or upload a text file to detect the emotion and generate audio with emotion-aware modulation."
)

# Launch Gradio interface
iface.launch()