Spaces:
Running
Running
File size: 14,962 Bytes
6fdb4ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# -*- coding:UTF-8 -*-
#!/usr/bin/env python
import numpy as np
import gradio as gr
import roop.globals
from roop.core import (
start,
decode_execution_providers,
suggest_max_memory,
suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image
from datetime import datetime
from huggingface_hub import HfApi, login
from datasets import load_dataset, Dataset
import json
import shutil
from dotenv import load_dotenv
import cv2
from insightface.app import FaceAnalysis
# Load environment variables
load_dotenv()
# Hàm tính cosine similarity để mày so sánh "điểm tương đồng" của khuôn mặt
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6)
# Class FaceIntegrDataset nguyên bản (cho image swap, không cần "xịn" cho video)
class FaceIntegrDataset:
def __init__(self, repo_id="Arrcttacsrks/face_integrData"):
self.token = os.getenv('hf_token')
if not self.token:
raise ValueError("HF_TOKEN environment variable is not set")
self.repo_id = repo_id
self.api = HfApi()
login(self.token)
self.temp_dir = "temp_dataset"
os.makedirs(self.temp_dir, exist_ok=True)
def create_date_folder(self):
current_date = datetime.now().strftime("%Y-%m-%d")
folder_path = os.path.join(self.temp_dir, current_date)
os.makedirs(folder_path, exist_ok=True)
return folder_path, current_date
def save_metadata(self, source_path, target_path, output_path, timestamp):
metadata = {
"timestamp": timestamp,
"source_image": source_path,
"target_image": target_path,
"output_image": output_path,
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
return metadata
def upload_to_hf(self, local_folder, date_folder):
try:
self.api.upload_folder(
folder_path=local_folder,
repo_id=self.repo_id,
repo_type="dataset",
path_in_repo=date_folder
)
return True
except Exception as e:
print(f"Error uploading to Hugging Face: {str(e)}")
return False
# Hàm swap_face nguyên bản dành cho ghép ảnh tĩnh
def swap_face(source_file, target_file, doFaceEnhancer):
folder_path = None
try:
dataset_handler = FaceIntegrDataset()
folder_path, date_folder = dataset_handler.create_date_folder()
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
source_path = os.path.join(folder_path, f"source_{timestamp}.jpg")
target_path = os.path.join(folder_path, f"target_{timestamp}.jpg")
output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg")
if source_file is None or target_file is None:
raise ValueError("Source and target images are required")
Image.fromarray(source_file).save(source_path)
Image.fromarray(target_file).save(target_path)
print("source_path: ", source_path)
print("target_path: ", target_path)
roop.globals.source_path = source_path
roop.globals.target_path = target_path
roop.globals.output_path = normalize_output_path(
roop.globals.source_path,
roop.globals.target_path,
output_path
)
if doFaceEnhancer:
roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
else:
roop.globals.frame_processors = ["face_swapper"]
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.max_memory = suggest_max_memory()
roop.globals.execution_providers = decode_execution_providers(["cuda"])
roop.globals.execution_threads = suggest_execution_threads()
print(
"start process",
roop.globals.source_path,
roop.globals.target_path,
roop.globals.output_path,
)
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_check():
return None
start()
metadata = dataset_handler.save_metadata(
f"source_{timestamp}.jpg",
f"target_{timestamp}.jpg",
f"OutputImage{timestamp}.jpg",
timestamp
)
metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=4)
upload_success = dataset_handler.upload_to_hf(folder_path, date_folder)
if upload_success:
print(f"Successfully uploaded files to dataset {dataset_handler.repo_id}")
else:
print("Failed to upload files to Hugging Face dataset")
if os.path.exists(output_path):
output_image = Image.open(output_path)
output_array = np.array(output_image)
shutil.rmtree(folder_path)
return output_array
else:
print("Output image not found")
if folder_path and os.path.exists(folder_path):
shutil.rmtree(folder_path)
return None
except Exception as e:
print(f"Error in face swap process: {str(e)}")
if folder_path and os.path.exists(folder_path):
shutil.rmtree(folder_path)
raise gr.Error(f"Face swap failed: {str(e)}")
# Hàm xử lý ghép mặt cho 1 frame video bằng cách "mượn" thuật toán của roop
def swap_face_frame(frame_bgr, replacement_face_rgb, doFaceEnhancer):
# Chuyển frame từ BGR sang RGB vì PIL làm việc với RGB
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
temp_dir = "temp_faceswap_frame"
os.makedirs(temp_dir, exist_ok=True)
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
source_path = os.path.join(temp_dir, f"source_{timestamp}.jpg")
target_path = os.path.join(temp_dir, f"target_{timestamp}.jpg")
output_path = os.path.join(temp_dir, f"OutputImage_{timestamp}.jpg")
Image.fromarray(frame_rgb).save(source_path)
Image.fromarray(replacement_face_rgb).save(target_path)
roop.globals.source_path = source_path
roop.globals.target_path = target_path
roop.globals.output_path = normalize_output_path(source_path, target_path, output_path)
if doFaceEnhancer:
roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
else:
roop.globals.frame_processors = ["face_swapper"]
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.max_memory = suggest_max_memory()
roop.globals.execution_providers = decode_execution_providers(["cuda"])
roop.globals.execution_threads = suggest_execution_threads()
start()
if os.path.exists(output_path):
swapped_img = np.array(Image.open(output_path))
else:
swapped_img = frame_rgb
shutil.rmtree(temp_dir)
return swapped_img
# Hàm xử lý ghép mặt cho video frame-by-frame với insightface để so sánh khuôn mặt
def swap_face_video(reference_face, replacement_face, video_input, similarity_threshold, doFaceEnhancer):
"""
reference_face: Ảnh tham chiếu (RGB) để khóa khuôn mặt
replacement_face: Ảnh ghép (RGB)
video_input: Đường dẫn file video đầu vào
similarity_threshold: Ngưỡng (0.0 - 1.0) cho tỉ lệ tương đồng
doFaceEnhancer: Boolean, có áp dụng cải thiện chất lượng hay không
"""
try:
# Chuẩn bị insightface
fa = FaceAnalysis()
# Loại bỏ nms=0.4 vì hàm prepare() không hỗ trợ argument này
fa.prepare(ctx_id=0)
# Lấy embedding của khuôn mặt tham chiếu
ref_detections = fa.get(reference_face)
if not ref_detections:
raise gr.Error("Không phát hiện khuôn mặt trong ảnh tham chiếu!")
ref_embedding = ref_detections[0].embedding
# Mở video đầu vào
cap = cv2.VideoCapture(video_input)
if not cap.isOpened():
raise gr.Error("Không mở được video đầu vào!")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = "temp_faceswap_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_index = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Chuyển frame sang RGB để insightface xử lý
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
detections = fa.get(frame_rgb)
swap_this_frame = False
for det in detections:
sim = cosine_similarity(det.embedding, ref_embedding)
if sim >= similarity_threshold:
swap_this_frame = True
break
if swap_this_frame:
# Ghép mặt từ replacement_face vào frame
swapped_frame_rgb = swap_face_frame(frame, replacement_face, doFaceEnhancer)
# Chuyển ngược lại sang BGR để ghi video
swapped_frame = cv2.cvtColor(swapped_frame_rgb, cv2.COLOR_RGB2BGR)
else:
swapped_frame = frame
out.write(swapped_frame)
frame_index += 1
print(f"Đã xử lý frame {frame_index}")
cap.release()
out.release()
return output_video_path
except Exception as e:
print(f"Lỗi khi xử lý video: {str(e)}")
raise gr.Error(f"Face swap video failed: {str(e)}")
# Giao diện Gradio được xây dựng với hai tab: Image và Video
def create_interface():
custom_css = """
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.output-image {
min-height: 400px;
border: 1px solid #ccc;
border-radius: 8px;
padding: 10px;
}
"""
title = "Face - Integrator"
description = r"""
Upload source and target images to perform face swap.
"""
article = r"""
<div style="text-align: center; max-width: 650px; margin: 40px auto;">
<p>
This tool performs face swapping with optional enhancement.
</p>
</div>
"""
with gr.Blocks(title=title, css=custom_css) as app:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("FaceSwap Image"):
with gr.Row():
with gr.Column(scale=1):
source_image = gr.Image(
label="Source Image",
type="numpy",
sources=["upload"]
)
with gr.Column(scale=1):
target_image = gr.Image(
label="Target Image",
type="numpy",
sources=["upload"]
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Output Image",
type="numpy",
interactive=False,
elem_classes="output-image"
)
with gr.Row():
enhance_checkbox = gr.Checkbox(
label="Apply the algorithm?",
info="Image Quality Improvement",
value=False
)
with gr.Row():
process_btn = gr.Button(
"Process Face Swap",
variant="primary",
size="lg"
)
process_btn.click(
fn=swap_face,
inputs=[source_image, target_image, enhance_checkbox],
outputs=output_image,
api_name="swap_face"
)
with gr.TabItem("FaceSwap Video"):
gr.Markdown("<h2 style='text-align:center;'>FaceSwap Video</h2>")
with gr.Row():
ref_image = gr.Image(
label="Ảnh mặt tham chiếu (khóa khuôn mặt)",
type="numpy",
sources=["upload"]
)
swap_image = gr.Image(
label="Ảnh mặt ghép",
type="numpy",
sources=["upload"]
)
video_input = gr.Video(
label="Video đầu vào"
)
similarity_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
label="Tỉ lệ tương đồng"
)
enhance_checkbox_video = gr.Checkbox(
label="Áp dụng cải thiện chất lượng ảnh",
info="Tùy chọn cải thiện",
value=False
)
process_video_btn = gr.Button(
"Xử lý FaceSwap Video",
variant="primary",
size="lg"
)
video_output = gr.Video(
label="Video kết quả"
)
process_video_btn.click(
fn=swap_face_video,
inputs=[ref_image, swap_image, video_input, similarity_threshold, enhance_checkbox_video],
outputs=video_output,
api_name="swap_face_video"
)
gr.Markdown(article)
return app
def main():
app = create_interface()
app.launch(share=False)
if __name__ == "__main__":
main()
|