File size: 14,962 Bytes
6fdb4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# -*- coding:UTF-8 -*-
#!/usr/bin/env python
import numpy as np
import gradio as gr
import roop.globals
from roop.core import (
    start,
    decode_execution_providers,
    suggest_max_memory,
    suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image
from datetime import datetime
from huggingface_hub import HfApi, login
from datasets import load_dataset, Dataset
import json
import shutil
from dotenv import load_dotenv
import cv2
from insightface.app import FaceAnalysis

# Load environment variables
load_dotenv()

# Hàm tính cosine similarity để mày so sánh "điểm tương đồng" của khuôn mặt
def cosine_similarity(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6)

# Class FaceIntegrDataset nguyên bản (cho image swap, không cần "xịn" cho video)
class FaceIntegrDataset:
    def __init__(self, repo_id="Arrcttacsrks/face_integrData"):
        self.token = os.getenv('hf_token')
        if not self.token:
            raise ValueError("HF_TOKEN environment variable is not set")
        self.repo_id = repo_id
        self.api = HfApi()
        login(self.token)
        self.temp_dir = "temp_dataset"
        os.makedirs(self.temp_dir, exist_ok=True)

    def create_date_folder(self):
        current_date = datetime.now().strftime("%Y-%m-%d")
        folder_path = os.path.join(self.temp_dir, current_date)
        os.makedirs(folder_path, exist_ok=True)
        return folder_path, current_date

    def save_metadata(self, source_path, target_path, output_path, timestamp):
        metadata = {
            "timestamp": timestamp,
            "source_image": source_path,
            "target_image": target_path,
            "output_image": output_path,
            "date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        return metadata

    def upload_to_hf(self, local_folder, date_folder):
        try:
            self.api.upload_folder(
                folder_path=local_folder,
                repo_id=self.repo_id,
                repo_type="dataset",
                path_in_repo=date_folder
            )
            return True
        except Exception as e:
            print(f"Error uploading to Hugging Face: {str(e)}")
            return False

# Hàm swap_face nguyên bản dành cho ghép ảnh tĩnh
def swap_face(source_file, target_file, doFaceEnhancer):
    folder_path = None
    try:
        dataset_handler = FaceIntegrDataset()
        folder_path, date_folder = dataset_handler.create_date_folder()
        timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
        source_path = os.path.join(folder_path, f"source_{timestamp}.jpg")
        target_path = os.path.join(folder_path, f"target_{timestamp}.jpg")
        output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg")

        if source_file is None or target_file is None:
            raise ValueError("Source and target images are required")
            
        Image.fromarray(source_file).save(source_path)
        Image.fromarray(target_file).save(target_path)
        
        print("source_path: ", source_path)
        print("target_path: ", target_path)
        
        roop.globals.source_path = source_path
        roop.globals.target_path = target_path
        roop.globals.output_path = normalize_output_path(
            roop.globals.source_path, 
            roop.globals.target_path, 
            output_path
        )
        
        if doFaceEnhancer:
            roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
        else:
            roop.globals.frame_processors = ["face_swapper"]
        
        roop.globals.headless = True
        roop.globals.keep_fps = True
        roop.globals.keep_audio = True
        roop.globals.keep_frames = False
        roop.globals.many_faces = False
        roop.globals.video_encoder = "libx264"
        roop.globals.video_quality = 18
        roop.globals.max_memory = suggest_max_memory()
        roop.globals.execution_providers = decode_execution_providers(["cuda"])
        roop.globals.execution_threads = suggest_execution_threads()
        
        print(
            "start process",
            roop.globals.source_path,
            roop.globals.target_path,
            roop.globals.output_path,
        )
        
        for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
            if not frame_processor.pre_check():
                return None
        
        start()
        
        metadata = dataset_handler.save_metadata(
            f"source_{timestamp}.jpg",
            f"target_{timestamp}.jpg",
            f"OutputImage{timestamp}.jpg",
            timestamp
        )
        
        metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json")
        with open(metadata_path, 'w') as f:
            json.dump(metadata, f, indent=4)
        
        upload_success = dataset_handler.upload_to_hf(folder_path, date_folder)
        
        if upload_success:
            print(f"Successfully uploaded files to dataset {dataset_handler.repo_id}")
        else:
            print("Failed to upload files to Hugging Face dataset")
        
        if os.path.exists(output_path):
            output_image = Image.open(output_path)
            output_array = np.array(output_image)
            shutil.rmtree(folder_path)
            return output_array
        else:
            print("Output image not found")
            if folder_path and os.path.exists(folder_path):
                shutil.rmtree(folder_path)
            return None
        
    except Exception as e:
        print(f"Error in face swap process: {str(e)}")
        if folder_path and os.path.exists(folder_path):
            shutil.rmtree(folder_path)
        raise gr.Error(f"Face swap failed: {str(e)}")

# Hàm xử lý ghép mặt cho 1 frame video bằng cách "mượn" thuật toán của roop
def swap_face_frame(frame_bgr, replacement_face_rgb, doFaceEnhancer):
    # Chuyển frame từ BGR sang RGB vì PIL làm việc với RGB
    frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
    temp_dir = "temp_faceswap_frame"
    os.makedirs(temp_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
    source_path = os.path.join(temp_dir, f"source_{timestamp}.jpg")
    target_path = os.path.join(temp_dir, f"target_{timestamp}.jpg")
    output_path = os.path.join(temp_dir, f"OutputImage_{timestamp}.jpg")
    Image.fromarray(frame_rgb).save(source_path)
    Image.fromarray(replacement_face_rgb).save(target_path)
    
    roop.globals.source_path = source_path
    roop.globals.target_path = target_path
    roop.globals.output_path = normalize_output_path(source_path, target_path, output_path)
    
    if doFaceEnhancer:
        roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
    else:
        roop.globals.frame_processors = ["face_swapper"]
        
    roop.globals.headless = True
    roop.globals.keep_fps = True
    roop.globals.keep_audio = True
    roop.globals.keep_frames = False
    roop.globals.many_faces = False
    roop.globals.video_encoder = "libx264"
    roop.globals.video_quality = 18
    roop.globals.max_memory = suggest_max_memory()
    roop.globals.execution_providers = decode_execution_providers(["cuda"])
    roop.globals.execution_threads = suggest_execution_threads()
    
    start()
    
    if os.path.exists(output_path):
        swapped_img = np.array(Image.open(output_path))
    else:
        swapped_img = frame_rgb
    shutil.rmtree(temp_dir)
    return swapped_img

# Hàm xử lý ghép mặt cho video frame-by-frame với insightface để so sánh khuôn mặt
def swap_face_video(reference_face, replacement_face, video_input, similarity_threshold, doFaceEnhancer):
    """
    reference_face: Ảnh tham chiếu (RGB) để khóa khuôn mặt
    replacement_face: Ảnh ghép (RGB)
    video_input: Đường dẫn file video đầu vào
    similarity_threshold: Ngưỡng (0.0 - 1.0) cho tỉ lệ tương đồng
    doFaceEnhancer: Boolean, có áp dụng cải thiện chất lượng hay không
    """
    try:
        # Chuẩn bị insightface
        fa = FaceAnalysis()
        # Loại bỏ nms=0.4 vì hàm prepare() không hỗ trợ argument này
        fa.prepare(ctx_id=0)
        
        # Lấy embedding của khuôn mặt tham chiếu
        ref_detections = fa.get(reference_face)
        if not ref_detections:
            raise gr.Error("Không phát hiện khuôn mặt trong ảnh tham chiếu!")
        ref_embedding = ref_detections[0].embedding
        
        # Mở video đầu vào
        cap = cv2.VideoCapture(video_input)
        if not cap.isOpened():
            raise gr.Error("Không mở được video đầu vào!")
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        output_video_path = "temp_faceswap_video.mp4"
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
        
        frame_index = 0
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            # Chuyển frame sang RGB để insightface xử lý
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            detections = fa.get(frame_rgb)
            swap_this_frame = False
            for det in detections:
                sim = cosine_similarity(det.embedding, ref_embedding)
                if sim >= similarity_threshold:
                    swap_this_frame = True
                    break
            if swap_this_frame:
                # Ghép mặt từ replacement_face vào frame
                swapped_frame_rgb = swap_face_frame(frame, replacement_face, doFaceEnhancer)
                # Chuyển ngược lại sang BGR để ghi video
                swapped_frame = cv2.cvtColor(swapped_frame_rgb, cv2.COLOR_RGB2BGR)
            else:
                swapped_frame = frame
            out.write(swapped_frame)
            frame_index += 1
            print(f"Đã xử lý frame {frame_index}")
        cap.release()
        out.release()
        return output_video_path
    except Exception as e:
        print(f"Lỗi khi xử lý video: {str(e)}")
        raise gr.Error(f"Face swap video failed: {str(e)}")

# Giao diện Gradio được xây dựng với hai tab: Image và Video
def create_interface():
    custom_css = """
    .container {
        max-width: 1200px;
        margin: auto;
        padding: 20px;
    }
    .output-image {
        min-height: 400px;
        border: 1px solid #ccc;
        border-radius: 8px;
        padding: 10px;
    }
    """
    title = "Face - Integrator"
    description = r"""
    Upload source and target images to perform face swap.
    """
    article = r"""
    <div style="text-align: center; max-width: 650px; margin: 40px auto;">
        <p>
            This tool performs face swapping with optional enhancement.
        </p>
    </div>
    """
    with gr.Blocks(title=title, css=custom_css) as app:
        gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
        gr.Markdown(description)
        with gr.Tabs():
            with gr.TabItem("FaceSwap Image"):
                with gr.Row():
                    with gr.Column(scale=1):
                        source_image = gr.Image(
                            label="Source Image",
                            type="numpy",
                            sources=["upload"]
                        )
                    with gr.Column(scale=1):
                        target_image = gr.Image(
                            label="Target Image",
                            type="numpy",
                            sources=["upload"]
                        )
                    with gr.Column(scale=1):
                        output_image = gr.Image(
                            label="Output Image",
                            type="numpy",
                            interactive=False,
                            elem_classes="output-image"
                        )
                with gr.Row():
                    enhance_checkbox = gr.Checkbox(
                        label="Apply the algorithm?",
                        info="Image Quality Improvement",
                        value=False
                    )
                with gr.Row():
                    process_btn = gr.Button(
                        "Process Face Swap",
                        variant="primary",
                        size="lg"
                    )
                process_btn.click(
                    fn=swap_face,
                    inputs=[source_image, target_image, enhance_checkbox],
                    outputs=output_image,
                    api_name="swap_face"
                )
            with gr.TabItem("FaceSwap Video"):
                gr.Markdown("<h2 style='text-align:center;'>FaceSwap Video</h2>")
                with gr.Row():
                    ref_image = gr.Image(
                        label="Ảnh mặt tham chiếu (khóa khuôn mặt)",
                        type="numpy",
                        sources=["upload"]
                    )
                    swap_image = gr.Image(
                        label="Ảnh mặt ghép",
                        type="numpy",
                        sources=["upload"]
                    )
                video_input = gr.Video(
                    label="Video đầu vào"
                )
                similarity_threshold = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.7,
                    label="Tỉ lệ tương đồng"
                )
                enhance_checkbox_video = gr.Checkbox(
                    label="Áp dụng cải thiện chất lượng ảnh",
                    info="Tùy chọn cải thiện",
                    value=False
                )
                process_video_btn = gr.Button(
                    "Xử lý FaceSwap Video",
                    variant="primary",
                    size="lg"
                )
                video_output = gr.Video(
                    label="Video kết quả"
                )
                process_video_btn.click(
                    fn=swap_face_video,
                    inputs=[ref_image, swap_image, video_input, similarity_threshold, enhance_checkbox_video],
                    outputs=video_output,
                    api_name="swap_face_video"
                )
        gr.Markdown(article)
    return app

def main():
    app = create_interface()
    app.launch(share=False)

if __name__ == "__main__":
    main()