Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,10 +24,57 @@ from dotenv import load_dotenv
|
|
24 |
load_dotenv()
|
25 |
|
26 |
class FaceIntegrDataset:
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def swap_face(source_file, target_file, doFaceEnhancer):
|
|
|
31 |
try:
|
32 |
# Initialize dataset handler
|
33 |
dataset_handler = FaceIntegrDataset()
|
@@ -44,6 +91,9 @@ def swap_face(source_file, target_file, doFaceEnhancer):
|
|
44 |
output_path = os.path.join(folder_path, f"Image{timestamp}.jpg")
|
45 |
|
46 |
# Save the input images
|
|
|
|
|
|
|
47 |
source_image = Image.fromarray(source_file)
|
48 |
source_image.save(source_path)
|
49 |
target_image = Image.fromarray(target_file)
|
@@ -117,50 +167,103 @@ def swap_face(source_file, target_file, doFaceEnhancer):
|
|
117 |
|
118 |
# Read the output image before cleaning up
|
119 |
if os.path.exists(output_path):
|
120 |
-
output_image =
|
|
|
121 |
# Clean up temp folder after reading the image
|
122 |
shutil.rmtree(folder_path)
|
123 |
-
return
|
124 |
else:
|
125 |
print("Output image not found")
|
126 |
-
|
|
|
127 |
return None
|
128 |
|
129 |
except Exception as e:
|
130 |
print(f"Error in face swap process: {str(e)}")
|
131 |
-
if os.path.exists(folder_path):
|
132 |
shutil.rmtree(folder_path)
|
133 |
-
raise gr.Error("Face swap failed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Gradio interface setup
|
136 |
title = "Face - Интегратор"
|
137 |
description = r"""
|
138 |
The application will save the image history to Hugging Face dataset using the environment variable token.
|
|
|
139 |
"""
|
140 |
article = r"""
|
141 |
-
<
|
|
|
|
|
|
|
|
|
|
|
142 |
"""
|
143 |
|
144 |
-
with
|
|
|
|
|
145 |
gr.Markdown(description)
|
|
|
146 |
with gr.Row():
|
147 |
-
with gr.Column():
|
148 |
-
source_image = gr.Image(
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
)
|
154 |
-
with gr.Column():
|
155 |
-
output_image = gr.Image(label="Output Image")
|
156 |
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
process_btn.click(
|
159 |
fn=swap_face,
|
160 |
inputs=[source_image, target_image, enhance_checkbox],
|
161 |
-
outputs=output_image
|
|
|
162 |
)
|
163 |
|
164 |
gr.Markdown(article)
|
165 |
|
166 |
-
|
|
|
|
24 |
load_dotenv()
|
25 |
|
26 |
class FaceIntegrDataset:
|
27 |
+
def __init__(self, repo_id="Arrcttacsrks/face_integrData"):
|
28 |
+
# Get token from environment variable
|
29 |
+
self.token = os.getenv('hf_token')
|
30 |
+
if not self.token:
|
31 |
+
raise ValueError("HF_TOKEN environment variable is not set")
|
32 |
+
|
33 |
+
self.repo_id = repo_id
|
34 |
+
self.api = HfApi()
|
35 |
+
|
36 |
+
# Login to Hugging Face
|
37 |
+
login(self.token)
|
38 |
+
|
39 |
+
# Create local temp directory for organizing files
|
40 |
+
self.temp_dir = "temp_dataset"
|
41 |
+
os.makedirs(self.temp_dir, exist_ok=True)
|
42 |
+
|
43 |
+
def create_date_folder(self):
|
44 |
+
"""Create folder structure based on current date"""
|
45 |
+
current_date = datetime.now().strftime("%Y-%m-%d")
|
46 |
+
folder_path = os.path.join(self.temp_dir, current_date)
|
47 |
+
os.makedirs(folder_path, exist_ok=True)
|
48 |
+
return folder_path, current_date
|
49 |
+
|
50 |
+
def save_metadata(self, source_path, target_path, output_path, timestamp):
|
51 |
+
"""Save metadata for the face swap operation"""
|
52 |
+
metadata = {
|
53 |
+
"timestamp": timestamp,
|
54 |
+
"source_image": source_path,
|
55 |
+
"target_image": target_path,
|
56 |
+
"output_image": output_path,
|
57 |
+
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
58 |
+
}
|
59 |
+
return metadata
|
60 |
+
|
61 |
+
def upload_to_hf(self, local_folder, date_folder):
|
62 |
+
"""Upload files to Hugging Face dataset"""
|
63 |
+
try:
|
64 |
+
# Upload the files
|
65 |
+
self.api.upload_folder(
|
66 |
+
folder_path=local_folder,
|
67 |
+
repo_id=self.repo_id,
|
68 |
+
repo_type="dataset",
|
69 |
+
path_in_repo=date_folder
|
70 |
+
)
|
71 |
+
return True
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error uploading to Hugging Face: {str(e)}")
|
74 |
+
return False
|
75 |
|
76 |
def swap_face(source_file, target_file, doFaceEnhancer):
|
77 |
+
folder_path = None
|
78 |
try:
|
79 |
# Initialize dataset handler
|
80 |
dataset_handler = FaceIntegrDataset()
|
|
|
91 |
output_path = os.path.join(folder_path, f"Image{timestamp}.jpg")
|
92 |
|
93 |
# Save the input images
|
94 |
+
if source_file is None or target_file is None:
|
95 |
+
raise ValueError("Source and target images are required")
|
96 |
+
|
97 |
source_image = Image.fromarray(source_file)
|
98 |
source_image.save(source_path)
|
99 |
target_image = Image.fromarray(target_file)
|
|
|
167 |
|
168 |
# Read the output image before cleaning up
|
169 |
if os.path.exists(output_path):
|
170 |
+
output_image = Image.open(output_path)
|
171 |
+
output_array = np.array(output_image)
|
172 |
# Clean up temp folder after reading the image
|
173 |
shutil.rmtree(folder_path)
|
174 |
+
return output_array
|
175 |
else:
|
176 |
print("Output image not found")
|
177 |
+
if folder_path and os.path.exists(folder_path):
|
178 |
+
shutil.rmtree(folder_path)
|
179 |
return None
|
180 |
|
181 |
except Exception as e:
|
182 |
print(f"Error in face swap process: {str(e)}")
|
183 |
+
if folder_path and os.path.exists(folder_path):
|
184 |
shutil.rmtree(folder_path)
|
185 |
+
raise gr.Error(f"Face swap failed: {str(e)}")
|
186 |
+
|
187 |
+
# Create custom style
|
188 |
+
custom_css = """
|
189 |
+
.container {
|
190 |
+
max-width: 1200px;
|
191 |
+
margin: auto;
|
192 |
+
padding: 20px;
|
193 |
+
}
|
194 |
+
.output-image {
|
195 |
+
min-height: 400px;
|
196 |
+
border: 1px solid #ccc;
|
197 |
+
border-radius: 8px;
|
198 |
+
padding: 10px;
|
199 |
+
}
|
200 |
+
"""
|
201 |
|
202 |
# Gradio interface setup
|
203 |
title = "Face - Интегратор"
|
204 |
description = r"""
|
205 |
The application will save the image history to Hugging Face dataset using the environment variable token.
|
206 |
+
Please upload source and target images to begin the face swap process.
|
207 |
"""
|
208 |
article = r"""
|
209 |
+
<div style="text-align: center; max-width: 650px; margin: 40px auto;">
|
210 |
+
<p>
|
211 |
+
This tool performs face swapping with optional enhancement.
|
212 |
+
The processed images are automatically saved to the Hugging Face dataset.
|
213 |
+
</p>
|
214 |
+
</div>
|
215 |
"""
|
216 |
|
217 |
+
# Create Gradio interface with improved layout
|
218 |
+
with gr.Blocks(title=title, css=custom_css) as app:
|
219 |
+
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
220 |
gr.Markdown(description)
|
221 |
+
|
222 |
with gr.Row():
|
223 |
+
with gr.Column(scale=1):
|
224 |
+
source_image = gr.Image(
|
225 |
+
label="Source Image",
|
226 |
+
type="numpy",
|
227 |
+
tool="upload"
|
228 |
+
)
|
229 |
+
|
230 |
+
with gr.Column(scale=1):
|
231 |
+
target_image = gr.Image(
|
232 |
+
label="Target Image",
|
233 |
+
type="numpy",
|
234 |
+
tool="upload"
|
235 |
+
)
|
236 |
+
|
237 |
+
with gr.Column(scale=1):
|
238 |
+
output_image = gr.Image(
|
239 |
+
label="Output Image",
|
240 |
+
type="numpy",
|
241 |
+
elem_classes="output-image"
|
242 |
)
|
|
|
|
|
243 |
|
244 |
+
with gr.Row():
|
245 |
+
enhance_checkbox = gr.Checkbox(
|
246 |
+
label="Применить алгоритм?",
|
247 |
+
info="Улучшение качества изображения",
|
248 |
+
value=False
|
249 |
+
)
|
250 |
+
|
251 |
+
with gr.Row():
|
252 |
+
process_btn = gr.Button(
|
253 |
+
"Process Face Swap",
|
254 |
+
variant="primary",
|
255 |
+
size="lg"
|
256 |
+
)
|
257 |
+
|
258 |
+
# Set up the processing event
|
259 |
process_btn.click(
|
260 |
fn=swap_face,
|
261 |
inputs=[source_image, target_image, enhance_checkbox],
|
262 |
+
outputs=output_image,
|
263 |
+
api_name="swap_face"
|
264 |
)
|
265 |
|
266 |
gr.Markdown(article)
|
267 |
|
268 |
+
# Launch the application
|
269 |
+
app.launch(share=False)
|