import gradio as gr from transformers import BertForSequenceClassification, BertTokenizer import torch model_name = "ArunNyp7/sentimentclassifier-finetuned-bert" model = BertForSequenceClassification.from_pretrained(model_name) tokenizer = BertTokenizer.from_pretrained(model_name) def classify_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits, dim=-1).item() labels = {0: "Positive", 1: "Neutral", 2: "Negative"} return labels[prediction] with gr.Blocks() as demo: gr.Markdown("### Sentiment Classification using Fine-Tuned BERT Model") text_input = gr.Textbox(label="Enter Text", placeholder="Type here...", lines=2) sentiment_output = gr.Label() submit_btn = gr.Button("Classify Sentiment") submit_btn.click(fn=classify_sentiment, inputs=text_input, outputs=sentiment_output) demo.launch(share=False)