|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import json |
|
|
|
from streamlit_echarts import st_echarts |
|
from app.show_examples import * |
|
from app.content import * |
|
|
|
import pandas as pd |
|
|
|
from model_information import get_dataframe |
|
info_df = get_dataframe() |
|
|
|
|
|
def draw_table(dataset_displayname, metrics): |
|
|
|
with open('organize_model_results.json', 'r') as f: |
|
organize_model_results = json.load(f) |
|
|
|
dataset_nickname = displayname2datasetname[dataset_displayname] |
|
model_results = organize_model_results[dataset_nickname][metrics] |
|
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])} |
|
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()} |
|
|
|
|
|
|
|
''' |
|
Show Table |
|
''' |
|
with st.container(): |
|
st.markdown('##### TABLE') |
|
|
|
model_link_mapping = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} |
|
chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname]) |
|
chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping) |
|
|
|
def highlight_first_element(x): |
|
|
|
df_style = pd.DataFrame('', index=x.index, columns=x.columns) |
|
df_style.iloc[0, 1] = 'background-color: #b0c1d7' |
|
return df_style |
|
|
|
if dataset_displayname in [ |
|
'LibriSpeech-Clean', |
|
'LibriSpeech-Other', |
|
'CommonVoice-15-EN', |
|
'Peoples-Speech', |
|
'GigaSpeech-1', |
|
'Earnings-21', |
|
'Earnings-22', |
|
'TED-LIUM-3', |
|
'TED-LIUM-3-LongForm', |
|
'AISHELL-ASR-ZH', |
|
'MNSC-PART1-ASR', |
|
'MNSC-PART2-ASR', |
|
'MNSC-PART3-ASR', |
|
'MNSC-PART4-ASR', |
|
'MNSC-PART5-ASR', |
|
'MNSC-PART6-ASR', |
|
'CNA', |
|
'IDPC', |
|
'Parliament', |
|
'UKUS-News', |
|
'Mediacorp', |
|
'IDPC-Short', |
|
'Parliament-Short', |
|
'UKUS-News-Short', |
|
'Mediacorp-Short', |
|
'YTB-ASR-Batch1', |
|
'YTB-ASR-Batch2', |
|
'SEAME-Dev-Man', |
|
'SEAME-Dev-Sge', |
|
'GigaSpeech2-Indo', |
|
'GigaSpeech2-Thai', |
|
'GigaSpeech2-Viet', |
|
]: |
|
|
|
chart_data_table = chart_data_table.sort_values( |
|
by = chart_data_table.columns[1], |
|
ascending = True |
|
).reset_index(drop=True) |
|
else: |
|
chart_data_table = chart_data_table.sort_values( |
|
by = chart_data_table.columns[1], |
|
ascending = False |
|
).reset_index(drop=True) |
|
|
|
|
|
styled_df = chart_data_table.style.format( |
|
{chart_data_table.columns[1]: "{:.3f}"} |
|
).apply( |
|
highlight_first_element, axis=None |
|
) |
|
|
|
|
|
st.dataframe( |
|
styled_df, |
|
column_config={ |
|
'model_show' : 'Model', |
|
chart_data_table.columns[1]: {'alignment': 'left'}, |
|
"model_link" : st.column_config.LinkColumn("Model Link"), |
|
}, |
|
hide_index=True, |
|
use_container_width=True |
|
) |
|
|
|
|
|
|
|
''' |
|
Show Chart |
|
''' |
|
|
|
if "show_chart" not in st.session_state: |
|
st.session_state.show_chart = False |
|
|
|
|
|
if st.button("Show Chart"): |
|
st.session_state.show_chart = not st.session_state.show_chart |
|
|
|
if st.session_state.show_chart: |
|
|
|
with st.container(): |
|
st.markdown('##### CHART') |
|
|
|
|
|
data_values = chart_data_table.iloc[:, 1] |
|
|
|
|
|
q1 = data_values.quantile(0.25) |
|
q3 = data_values.quantile(0.75) |
|
|
|
|
|
iqr = q3 - q1 |
|
|
|
|
|
lower_bound = q1 - 1.5 * iqr |
|
upper_bound = q3 + 1.5 * iqr |
|
|
|
|
|
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)] |
|
|
|
|
|
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3) |
|
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3) |
|
|
|
options = { |
|
|
|
"tooltip": { |
|
"trigger": "axis", |
|
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, |
|
"triggerOn": 'mousemove', |
|
}, |
|
"legend": {"data": ['Overall Accuracy']}, |
|
"toolbox": {"feature": {"saveAsImage": {}}}, |
|
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, |
|
"xAxis": [ |
|
{ |
|
"type": "category", |
|
"boundaryGap": True, |
|
"triggerEvent": True, |
|
"data": chart_data_table['model_show'].tolist(), |
|
} |
|
], |
|
"yAxis": [{"type": "value", |
|
"min": min_value, |
|
"max": max_value, |
|
"boundaryGap": True |
|
|
|
}], |
|
"series": [{ |
|
"name": f"{dataset_nickname}", |
|
"type": "bar", |
|
"data": chart_data_table[f'{dataset_displayname}'].tolist(), |
|
}], |
|
} |
|
|
|
events = { |
|
"click": "function(params) { return params.value }" |
|
} |
|
|
|
value = st_echarts(options=options, events=events, height="500px") |
|
|
|
|
|
|
|
''' |
|
Show Examples |
|
''' |
|
|
|
if "show_examples" not in st.session_state: |
|
st.session_state.show_examples = False |
|
|
|
|
|
if st.button("Show Examples"): |
|
st.session_state.show_examples = not st.session_state.show_examples |
|
|
|
if st.session_state.show_examples: |
|
st.markdown('To be implemented') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|