import streamlit as st import pandas as pd import numpy as np import json from streamlit_echarts import st_echarts from app.show_examples import * from app.content import * import pandas as pd from model_information import get_dataframe info_df = get_dataframe() def draw_table(dataset_displayname, metrics): with open('organize_model_results.json', 'r') as f: organize_model_results = json.load(f) dataset_nickname = displayname2datasetname[dataset_displayname] model_results = organize_model_results[dataset_nickname][metrics] model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])} model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()} # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ''' Show Table ''' with st.container(): st.markdown('##### TABLE') model_link_mapping = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname]) chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping) def highlight_first_element(x): # Create a DataFrame with the same shape as the input df_style = pd.DataFrame('', index=x.index, columns=x.columns) df_style.iloc[0, 1] = 'background-color: #b0c1d7' return df_style if dataset_displayname in [ 'LibriSpeech-Clean', 'LibriSpeech-Other', 'CommonVoice-15-EN', 'Peoples-Speech', 'GigaSpeech-1', 'Earnings-21', 'Earnings-22', 'TED-LIUM-3', 'TED-LIUM-3-LongForm', 'AISHELL-ASR-ZH', 'MNSC-PART1-ASR', 'MNSC-PART2-ASR', 'MNSC-PART3-ASR', 'MNSC-PART4-ASR', 'MNSC-PART5-ASR', 'MNSC-PART6-ASR', 'CNA', 'IDPC', 'Parliament', 'UKUS-News', 'Mediacorp', 'IDPC-Short', 'Parliament-Short', 'UKUS-News-Short', 'Mediacorp-Short', 'YTB-ASR-Batch1', 'YTB-ASR-Batch2', 'SEAME-Dev-Man', 'SEAME-Dev-Sge', 'GigaSpeech2-Indo', 'GigaSpeech2-Thai', 'GigaSpeech2-Viet', ]: chart_data_table = chart_data_table.sort_values( by = chart_data_table.columns[1], ascending = True ).reset_index(drop=True) else: chart_data_table = chart_data_table.sort_values( by = chart_data_table.columns[1], ascending = False ).reset_index(drop=True) styled_df = chart_data_table.style.format( {chart_data_table.columns[1]: "{:.3f}"} ).apply( highlight_first_element, axis=None ) st.dataframe( styled_df, column_config={ 'model_show' : 'Model', chart_data_table.columns[1]: {'alignment': 'left'}, "model_link" : st.column_config.LinkColumn("Model Link"), }, hide_index=True, use_container_width=True ) # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ''' Show Chart ''' # Initialize a session state variable for toggling the chart visibility if "show_chart" not in st.session_state: st.session_state.show_chart = False # Create a button to toggle visibility if st.button("Show Chart"): st.session_state.show_chart = not st.session_state.show_chart if st.session_state.show_chart: with st.container(): st.markdown('##### CHART') # Get Values data_values = chart_data_table.iloc[:, 1] # Calculate Q1 and Q3 q1 = data_values.quantile(0.25) q3 = data_values.quantile(0.75) # Calculate IQR iqr = q3 - q1 # Define lower and upper bounds (1.5*IQR is a common threshold) lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr # Filter data within the bounds filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)] # Calculate min and max values after outlier handling min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3) max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3) options = { # "title": {"text": f"{dataset_name}"}, "tooltip": { "trigger": "axis", "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, "triggerOn": 'mousemove', }, "legend": {"data": ['Overall Accuracy']}, "toolbox": {"feature": {"saveAsImage": {}}}, "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, "xAxis": [ { "type": "category", "boundaryGap": True, "triggerEvent": True, "data": chart_data_table['model_show'].tolist(), } ], "yAxis": [{"type": "value", "min": min_value, "max": max_value, "boundaryGap": True # "splitNumber": 10 }], "series": [{ "name": f"{dataset_nickname}", "type": "bar", "data": chart_data_table[f'{dataset_displayname}'].tolist(), }], } events = { "click": "function(params) { return params.value }" } value = st_echarts(options=options, events=events, height="500px") # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ''' Show Examples ''' # Initialize a session state variable for toggling the chart visibility if "show_examples" not in st.session_state: st.session_state.show_examples = False # Create a button to toggle visibility if st.button("Show Examples"): st.session_state.show_examples = not st.session_state.show_examples if st.session_state.show_examples: st.markdown('To be implemented') # # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']: # if dataset_name in []: # pass # else: # show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)