Upload folder using huggingface_hub
Browse files- app/content.py +0 -1
- app/draw_diagram.py +25 -83
- app/pages.py +232 -235
- app/summarization.py +24 -14
app/content.py
CHANGED
@@ -151,7 +151,6 @@ dataset_diaplay_information = {
|
|
151 |
|
152 |
metrics_info = {
|
153 |
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
154 |
-
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
155 |
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
156 |
'meteor' : 'METEOR Score. The higher, the better.',
|
157 |
'bleu' : 'BLEU Score. The higher, the better.',
|
|
|
151 |
|
152 |
metrics_info = {
|
153 |
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
|
|
154 |
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
155 |
'meteor' : 'METEOR Score. The higher, the better.',
|
156 |
'bleu' : 'BLEU Score. The higher, the better.',
|
app/draw_diagram.py
CHANGED
@@ -15,56 +15,14 @@ info_df = get_dataframe()
|
|
15 |
|
16 |
def draw_table(dataset_displayname, metrics):
|
17 |
|
18 |
-
dataset_nickname = displayname2datasetname[dataset_displayname]
|
19 |
-
|
20 |
with open('organize_model_results.json', 'r') as f:
|
21 |
organize_model_results = json.load(f)
|
22 |
|
|
|
23 |
model_results = organize_model_results[dataset_nickname][metrics]
|
24 |
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
25 |
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
|
26 |
|
27 |
-
|
28 |
-
# folder = f"./results_organized/{metrics}/"
|
29 |
-
|
30 |
-
# # Load the results from CSV
|
31 |
-
# data_path = f'{folder}/{category_name.lower()}.csv'
|
32 |
-
# chart_data = pd.read_csv(data_path).round(3)
|
33 |
-
|
34 |
-
# dataset_name = displayname2datasetname[displayname]
|
35 |
-
# chart_data = chart_data[['Model', dataset_name]]
|
36 |
-
|
37 |
-
# # Rename to proper display name
|
38 |
-
# chart_data = chart_data.rename(columns=datasetname2diaplayname)
|
39 |
-
|
40 |
-
# st.markdown("""
|
41 |
-
# <style>
|
42 |
-
# .stMultiSelect [data-baseweb=select] span {
|
43 |
-
# max-width: 800px;
|
44 |
-
# font-size: 0.9rem;
|
45 |
-
# background-color: #3C6478 !important; /* Background color for selected items */
|
46 |
-
# color: white; /* Change text color */
|
47 |
-
# back
|
48 |
-
# }
|
49 |
-
# </style>
|
50 |
-
# """, unsafe_allow_html=True)
|
51 |
-
|
52 |
-
# # remap model names
|
53 |
-
# display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
54 |
-
# chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
|
55 |
-
|
56 |
-
|
57 |
-
# models = st.multiselect("Please choose the model",
|
58 |
-
# sorted(chart_data['model_show'].tolist()),
|
59 |
-
# default = sorted(chart_data['model_show'].tolist()),
|
60 |
-
# )
|
61 |
-
|
62 |
-
# chart_data = chart_data[chart_data['model_show'].isin(models)]
|
63 |
-
# chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0)
|
64 |
-
|
65 |
-
# if len(chart_data) == 0: return
|
66 |
-
|
67 |
-
|
68 |
|
69 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
70 |
'''
|
@@ -73,23 +31,13 @@ def draw_table(dataset_displayname, metrics):
|
|
73 |
with st.container():
|
74 |
st.markdown('##### TABLE')
|
75 |
|
76 |
-
model_link_mapping
|
77 |
-
|
78 |
-
chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname])
|
79 |
chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping)
|
80 |
|
81 |
-
# chart_data['model_link'] = chart_data['model_show'].map(model_link)
|
82 |
-
|
83 |
-
# chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
|
84 |
-
|
85 |
-
# Format numeric columns to 2 decimal places
|
86 |
-
#chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
|
87 |
-
# dataset_name = chart_data_table.columns[1]
|
88 |
-
|
89 |
-
|
90 |
def highlight_first_element(x):
|
91 |
# Create a DataFrame with the same shape as the input
|
92 |
-
df_style
|
93 |
df_style.iloc[0, 1] = 'background-color: #b0c1d7'
|
94 |
return df_style
|
95 |
|
@@ -126,40 +74,39 @@ def draw_table(dataset_displayname, metrics):
|
|
126 |
]:
|
127 |
|
128 |
chart_data_table = chart_data_table.sort_values(
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
else:
|
133 |
chart_data_table = chart_data_table.sort_values(
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
|
139 |
styled_df = chart_data_table.style.format(
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
|
146 |
st.dataframe(
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
|
158 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
159 |
'''
|
160 |
Show Chart
|
161 |
'''
|
162 |
-
|
163 |
# Initialize a session state variable for toggling the chart visibility
|
164 |
if "show_chart" not in st.session_state:
|
165 |
st.session_state.show_chart = False
|
@@ -232,15 +179,10 @@ def draw_table(dataset_displayname, metrics):
|
|
232 |
value = st_echarts(options=options, events=events, height="500px")
|
233 |
|
234 |
|
235 |
-
|
236 |
-
|
237 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
238 |
-
|
239 |
'''
|
240 |
Show Examples
|
241 |
'''
|
242 |
-
|
243 |
-
|
244 |
# Initialize a session state variable for toggling the chart visibility
|
245 |
if "show_examples" not in st.session_state:
|
246 |
st.session_state.show_examples = False
|
|
|
15 |
|
16 |
def draw_table(dataset_displayname, metrics):
|
17 |
|
|
|
|
|
18 |
with open('organize_model_results.json', 'r') as f:
|
19 |
organize_model_results = json.load(f)
|
20 |
|
21 |
+
dataset_nickname = displayname2datasetname[dataset_displayname]
|
22 |
model_results = organize_model_results[dataset_nickname][metrics]
|
23 |
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
24 |
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
28 |
'''
|
|
|
31 |
with st.container():
|
32 |
st.markdown('##### TABLE')
|
33 |
|
34 |
+
model_link_mapping = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
|
35 |
+
chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname])
|
|
|
36 |
chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def highlight_first_element(x):
|
39 |
# Create a DataFrame with the same shape as the input
|
40 |
+
df_style = pd.DataFrame('', index=x.index, columns=x.columns)
|
41 |
df_style.iloc[0, 1] = 'background-color: #b0c1d7'
|
42 |
return df_style
|
43 |
|
|
|
74 |
]:
|
75 |
|
76 |
chart_data_table = chart_data_table.sort_values(
|
77 |
+
by = chart_data_table.columns[1],
|
78 |
+
ascending = True
|
79 |
+
).reset_index(drop=True)
|
80 |
else:
|
81 |
chart_data_table = chart_data_table.sort_values(
|
82 |
+
by = chart_data_table.columns[1],
|
83 |
+
ascending = False
|
84 |
+
).reset_index(drop=True)
|
85 |
+
|
86 |
|
87 |
styled_df = chart_data_table.style.format(
|
88 |
+
{chart_data_table.columns[1]: "{:.3f}"}
|
89 |
+
).apply(
|
90 |
+
highlight_first_element, axis=None
|
91 |
+
)
|
92 |
|
93 |
|
94 |
st.dataframe(
|
95 |
+
styled_df,
|
96 |
+
column_config={
|
97 |
+
'model_show' : 'Model',
|
98 |
+
chart_data_table.columns[1]: {'alignment': 'left'},
|
99 |
+
"model_link" : st.column_config.LinkColumn("Model Link"),
|
100 |
+
},
|
101 |
+
hide_index=True,
|
102 |
+
use_container_width=True
|
103 |
+
)
|
104 |
+
|
105 |
|
106 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
107 |
'''
|
108 |
Show Chart
|
109 |
'''
|
|
|
110 |
# Initialize a session state variable for toggling the chart visibility
|
111 |
if "show_chart" not in st.session_state:
|
112 |
st.session_state.show_chart = False
|
|
|
179 |
value = st_echarts(options=options, events=events, height="500px")
|
180 |
|
181 |
|
|
|
|
|
182 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
|
|
183 |
'''
|
184 |
Show Examples
|
185 |
'''
|
|
|
|
|
186 |
# Initialize a session state variable for toggling the chart visibility
|
187 |
if "show_examples" not in st.session_state:
|
188 |
st.session_state.show_examples = False
|
app/pages.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
-
from app.draw_diagram import
|
3 |
from app.content import *
|
4 |
-
from app.summarization import
|
5 |
|
6 |
def dataset_contents(dataset, metrics):
|
7 |
custom_css = """
|
@@ -115,7 +115,7 @@ def asr_english():
|
|
115 |
st.title("Task: Automatic Speech Recognition - English")
|
116 |
|
117 |
sum = ['Overall']
|
118 |
-
|
119 |
'LibriSpeech-Clean',
|
120 |
'LibriSpeech-Other',
|
121 |
'CommonVoice-15-EN',
|
@@ -126,32 +126,29 @@ def asr_english():
|
|
126 |
'TED-LIUM-3',
|
127 |
'TED-LIUM-3-LongForm',
|
128 |
]
|
129 |
-
|
130 |
-
filters_1_list = sum + dataset_lists
|
131 |
|
132 |
-
|
133 |
|
134 |
-
with
|
135 |
tab_section = st.selectbox('Dataset', filters_1_list)
|
136 |
-
with
|
137 |
-
metric = st.selectbox('Metric', ['
|
|
|
138 |
|
139 |
if tab_section:
|
140 |
if tab_section in sum:
|
141 |
-
sum_table_mulit_metrix(
|
142 |
-
|
143 |
else:
|
144 |
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
145 |
draw_table(tab_section, metric)
|
146 |
|
147 |
|
148 |
-
|
149 |
-
|
150 |
def asr_singlish():
|
151 |
st.title("Task: Automatic Speech Recognition - Singlish")
|
152 |
|
153 |
sum = ['Overall']
|
154 |
-
|
155 |
'MNSC-PART1-ASR',
|
156 |
'MNSC-PART2-ASR',
|
157 |
'MNSC-PART3-ASR',
|
@@ -161,20 +158,22 @@ def asr_singlish():
|
|
161 |
'SEAME-Dev-Man',
|
162 |
'SEAME-Dev-Sge',
|
163 |
]
|
164 |
-
|
165 |
-
filters_levelone = sum + dataset_lists
|
166 |
|
167 |
-
|
168 |
|
169 |
-
with
|
170 |
-
|
|
|
|
|
|
|
171 |
|
172 |
-
if
|
173 |
-
if
|
174 |
-
sum_table_mulit_metrix(
|
175 |
else:
|
176 |
-
dataset_contents(dataset_diaplay_information[
|
177 |
-
|
178 |
|
179 |
|
180 |
|
@@ -183,52 +182,56 @@ def asr_mandarin():
|
|
183 |
st.title("Task: Automatic Speech Recognition - Mandarin")
|
184 |
|
185 |
sum = ['Overall']
|
186 |
-
|
187 |
'AISHELL-ASR-ZH',
|
188 |
]
|
189 |
-
|
190 |
-
filters_levelone = sum + dataset_lists
|
191 |
|
192 |
-
|
193 |
|
194 |
-
with
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
200 |
else:
|
201 |
-
dataset_contents(dataset_diaplay_information[
|
202 |
-
|
203 |
|
204 |
-
|
205 |
|
|
|
206 |
|
207 |
def speech_translation():
|
208 |
st.title("Task: Speech Translation")
|
209 |
|
210 |
sum = ['Overall']
|
211 |
-
|
212 |
'CoVoST2-EN-ID',
|
213 |
'CoVoST2-EN-ZH',
|
214 |
'CoVoST2-EN-TA',
|
215 |
'CoVoST2-ID-EN',
|
216 |
'CoVoST2-ZH-EN',
|
217 |
'CoVoST2-TA-EN']
|
218 |
-
|
219 |
-
filters_levelone = sum + dataset_lists
|
220 |
|
221 |
-
|
222 |
|
223 |
-
with
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
229 |
else:
|
230 |
-
dataset_contents(dataset_diaplay_information[
|
231 |
-
|
232 |
|
233 |
|
234 |
|
@@ -237,93 +240,85 @@ def speech_question_answering_english():
|
|
237 |
st.title("Task: Spoken Question Answering - English")
|
238 |
|
239 |
sum = ['Overall']
|
240 |
-
|
241 |
-
dataset_lists = [
|
242 |
'CN-College-Listen-MCQ',
|
243 |
'DREAM-TTS-MCQ',
|
244 |
'SLUE-P2-SQA5',
|
245 |
'Public-SG-Speech-QA',
|
246 |
'Spoken-SQuAD',
|
247 |
]
|
248 |
-
|
249 |
-
filters_levelone = sum + dataset_lists
|
250 |
|
251 |
-
|
252 |
|
253 |
-
with
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
else:
|
265 |
-
dataset_contents(dataset_diaplay_information[
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
|
270 |
|
271 |
def speech_question_answering_singlish():
|
272 |
st.title("Task: Spoken Question Answering - Singlish")
|
273 |
|
274 |
sum = ['Overall']
|
275 |
-
|
276 |
-
dataset_lists = [
|
277 |
'MNSC-PART3-SQA',
|
278 |
'MNSC-PART4-SQA',
|
279 |
'MNSC-PART5-SQA',
|
280 |
'MNSC-PART6-SQA',
|
281 |
]
|
282 |
-
|
283 |
-
|
284 |
-
filters_levelone = sum + dataset_lists
|
285 |
|
286 |
-
|
287 |
|
288 |
-
with
|
289 |
-
|
|
|
|
|
|
|
290 |
|
291 |
-
if
|
292 |
-
if
|
293 |
-
sum_table_mulit_metrix(
|
294 |
-
|
295 |
else:
|
296 |
-
dataset_contents(dataset_diaplay_information[
|
297 |
-
|
298 |
|
299 |
|
300 |
def spoken_dialogue_summarization_singlish():
|
301 |
st.title("Task: Spoken Dialogue Summarization - Singlish")
|
302 |
|
303 |
sum = ['Overall']
|
304 |
-
|
305 |
-
dataset_lists = [
|
306 |
'MNSC-PART3-SDS',
|
307 |
'MNSC-PART4-SDS',
|
308 |
'MNSC-PART5-SDS',
|
309 |
'MNSC-PART6-SDS',
|
310 |
]
|
|
|
311 |
|
312 |
-
|
313 |
-
filters_levelone = sum + dataset_lists
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
with
|
318 |
-
|
|
|
319 |
|
320 |
-
if
|
321 |
-
if
|
322 |
-
sum_table_mulit_metrix(
|
323 |
-
|
324 |
else:
|
325 |
-
dataset_contents(dataset_diaplay_information[
|
326 |
-
|
327 |
|
328 |
|
329 |
|
@@ -332,100 +327,72 @@ def speech_instruction():
|
|
332 |
st.title("Task: Speech Instruction")
|
333 |
|
334 |
sum = ['Overall']
|
335 |
-
|
336 |
-
dataset_lists = ['OpenHermes-Audio',
|
337 |
'ALPACA-Audio',
|
338 |
]
|
|
|
|
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
346 |
|
347 |
-
if
|
348 |
-
if
|
349 |
-
sum_table_mulit_metrix(
|
350 |
else:
|
351 |
-
dataset_contents(dataset_diaplay_information[
|
352 |
-
|
353 |
-
|
354 |
|
355 |
|
356 |
|
357 |
def audio_captioning():
|
358 |
st.title("Task: Audio Captioning")
|
359 |
|
360 |
-
|
361 |
'AudioCaps',
|
362 |
]
|
363 |
-
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
364 |
|
365 |
-
|
366 |
|
367 |
-
with
|
368 |
-
|
369 |
-
with
|
370 |
-
metric = st.selectbox('Metric',
|
371 |
-
|
372 |
-
if filter_1 or metric:
|
373 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info[metric.lower().replace('-', '_')])
|
374 |
-
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
|
375 |
-
|
376 |
|
|
|
|
|
|
|
377 |
|
378 |
|
379 |
def audio_scene_question_answering():
|
380 |
st.title("Task: Audio Scene Question Answering")
|
381 |
|
382 |
sum = ['Overall']
|
383 |
-
|
384 |
-
dataset_lists = ['Clotho-AQA',
|
385 |
'WavCaps-QA',
|
386 |
'AudioCaps-QA']
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
391 |
-
|
392 |
-
with left:
|
393 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
394 |
-
|
395 |
-
if filter_1:
|
396 |
-
if filter_1 in sum:
|
397 |
-
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
|
398 |
-
else:
|
399 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
400 |
-
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
def emotion_recognition():
|
406 |
-
st.title("Task: Emotion Recognition")
|
407 |
-
|
408 |
-
sum = ['Overall']
|
409 |
|
410 |
-
|
411 |
-
'IEMOCAP-Emotion',
|
412 |
-
'MELD-Sentiment',
|
413 |
-
'MELD-Emotion',
|
414 |
-
]
|
415 |
-
|
416 |
-
filters_levelone = sum + dataset_lists
|
417 |
-
|
418 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
419 |
|
420 |
-
with
|
421 |
-
|
|
|
|
|
|
|
422 |
|
423 |
-
if
|
424 |
-
if
|
425 |
-
sum_table_mulit_metrix(
|
426 |
else:
|
427 |
-
dataset_contents(dataset_diaplay_information[
|
428 |
-
|
|
|
429 |
|
430 |
|
431 |
|
@@ -434,28 +401,27 @@ def accent_recognition():
|
|
434 |
st.title("Task: Accent Recognition")
|
435 |
|
436 |
sum = ['Overall']
|
437 |
-
|
438 |
'VoxCeleb-Accent',
|
439 |
'MNSC-AR-Sentence',
|
440 |
'MNSC-AR-Dialogue',
|
441 |
]
|
442 |
-
|
443 |
-
|
444 |
-
filters_levelone = sum + dataset_lists
|
445 |
|
446 |
-
|
447 |
|
448 |
-
with
|
449 |
-
|
450 |
-
|
|
|
|
|
451 |
|
452 |
-
if
|
453 |
-
if
|
454 |
-
sum_table_mulit_metrix(
|
455 |
else:
|
456 |
-
dataset_contents(dataset_diaplay_information[
|
457 |
-
|
458 |
-
|
459 |
|
460 |
|
461 |
|
@@ -463,25 +429,56 @@ def gender_recognition():
|
|
463 |
st.title("Task: Gender Recognition")
|
464 |
|
465 |
sum = ['Overall']
|
466 |
-
|
467 |
-
dataset_lists = [
|
468 |
'VoxCeleb-Gender',
|
469 |
'IEMOCAP-Gender'
|
470 |
]
|
471 |
-
|
472 |
-
filters_levelone = sum + dataset_lists
|
473 |
|
474 |
-
|
475 |
|
476 |
-
with
|
477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
-
|
480 |
-
|
481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
else:
|
483 |
-
dataset_contents(dataset_diaplay_information[
|
484 |
-
|
485 |
|
486 |
|
487 |
|
@@ -491,25 +488,25 @@ def music_understanding():
|
|
491 |
|
492 |
sum = ['Overall']
|
493 |
|
494 |
-
|
495 |
]
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
500 |
|
501 |
-
|
502 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
503 |
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|
510 |
-
|
511 |
-
|
512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
|
515 |
|
@@ -520,8 +517,7 @@ def music_understanding():
|
|
520 |
def under_development():
|
521 |
st.title("Task: Under Development")
|
522 |
|
523 |
-
|
524 |
-
dataset_lists = [
|
525 |
'CNA',
|
526 |
'IDPC',
|
527 |
'Parliament',
|
@@ -536,43 +532,44 @@ def under_development():
|
|
536 |
'YTB-SQA-Batch1',
|
537 |
'YTB-SDS-Batch1',
|
538 |
'YTB-PQA-Batch1',
|
539 |
-
|
540 |
]
|
541 |
|
542 |
-
|
543 |
-
|
544 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
545 |
-
|
546 |
-
with left:
|
547 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
548 |
|
549 |
-
|
550 |
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
|
|
|
|
|
|
575 |
|
|
|
|
|
|
|
|
|
576 |
|
577 |
|
578 |
def mmau_evaluation():
|
|
|
1 |
import streamlit as st
|
2 |
+
from app.draw_diagram import draw_table
|
3 |
from app.content import *
|
4 |
+
from app.summarization import sum_table_mulit_metrix
|
5 |
|
6 |
def dataset_contents(dataset, metrics):
|
7 |
custom_css = """
|
|
|
115 |
st.title("Task: Automatic Speech Recognition - English")
|
116 |
|
117 |
sum = ['Overall']
|
118 |
+
dataset_list = [
|
119 |
'LibriSpeech-Clean',
|
120 |
'LibriSpeech-Other',
|
121 |
'CommonVoice-15-EN',
|
|
|
126 |
'TED-LIUM-3',
|
127 |
'TED-LIUM-3-LongForm',
|
128 |
]
|
129 |
+
filters_1_list = sum + dataset_list
|
|
|
130 |
|
131 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
132 |
|
133 |
+
with space1:
|
134 |
tab_section = st.selectbox('Dataset', filters_1_list)
|
135 |
+
with space2:
|
136 |
+
metric = st.selectbox('Metric', ['WER'])
|
137 |
+
metric = metric.lower()
|
138 |
|
139 |
if tab_section:
|
140 |
if tab_section in sum:
|
141 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
142 |
else:
|
143 |
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
144 |
draw_table(tab_section, metric)
|
145 |
|
146 |
|
|
|
|
|
147 |
def asr_singlish():
|
148 |
st.title("Task: Automatic Speech Recognition - Singlish")
|
149 |
|
150 |
sum = ['Overall']
|
151 |
+
dataset_list = [
|
152 |
'MNSC-PART1-ASR',
|
153 |
'MNSC-PART2-ASR',
|
154 |
'MNSC-PART3-ASR',
|
|
|
158 |
'SEAME-Dev-Man',
|
159 |
'SEAME-Dev-Sge',
|
160 |
]
|
161 |
+
filters_1_list = sum + dataset_list
|
|
|
162 |
|
163 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
164 |
|
165 |
+
with space1:
|
166 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
167 |
+
with space2:
|
168 |
+
metric = st.selectbox('Metric', ['WER'])
|
169 |
+
metric = metric.lower()
|
170 |
|
171 |
+
if tab_section:
|
172 |
+
if tab_section in sum:
|
173 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
174 |
else:
|
175 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
176 |
+
draw_table(tab_section, metric)
|
177 |
|
178 |
|
179 |
|
|
|
182 |
st.title("Task: Automatic Speech Recognition - Mandarin")
|
183 |
|
184 |
sum = ['Overall']
|
185 |
+
dataset_list = [
|
186 |
'AISHELL-ASR-ZH',
|
187 |
]
|
188 |
+
filters_1_list = sum + dataset_list
|
|
|
189 |
|
190 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
191 |
|
192 |
+
with space1:
|
193 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
194 |
+
with space2:
|
195 |
+
metric = st.selectbox('Metric', ['WER'])
|
196 |
+
metric = metric.lower()
|
197 |
+
|
198 |
+
if tab_section:
|
199 |
+
if tab_section in sum:
|
200 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
201 |
else:
|
202 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
203 |
+
draw_table(tab_section, metric)
|
204 |
|
|
|
205 |
|
206 |
+
|
207 |
|
208 |
def speech_translation():
|
209 |
st.title("Task: Speech Translation")
|
210 |
|
211 |
sum = ['Overall']
|
212 |
+
dataset_list = [
|
213 |
'CoVoST2-EN-ID',
|
214 |
'CoVoST2-EN-ZH',
|
215 |
'CoVoST2-EN-TA',
|
216 |
'CoVoST2-ID-EN',
|
217 |
'CoVoST2-ZH-EN',
|
218 |
'CoVoST2-TA-EN']
|
219 |
+
filters_1_list = sum + dataset_list
|
|
|
220 |
|
221 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
222 |
|
223 |
+
with space1:
|
224 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
225 |
+
with space2:
|
226 |
+
metric = st.selectbox('Metric', ['BLEU'])
|
227 |
+
metric = metric.lower()
|
228 |
+
|
229 |
+
if tab_section:
|
230 |
+
if tab_section in sum:
|
231 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
232 |
else:
|
233 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
234 |
+
draw_table(tab_section, metric)
|
235 |
|
236 |
|
237 |
|
|
|
240 |
st.title("Task: Spoken Question Answering - English")
|
241 |
|
242 |
sum = ['Overall']
|
243 |
+
dataset_list = [
|
|
|
244 |
'CN-College-Listen-MCQ',
|
245 |
'DREAM-TTS-MCQ',
|
246 |
'SLUE-P2-SQA5',
|
247 |
'Public-SG-Speech-QA',
|
248 |
'Spoken-SQuAD',
|
249 |
]
|
250 |
+
filters_1_list = sum + dataset_list
|
|
|
251 |
|
252 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
253 |
|
254 |
+
with space1:
|
255 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
256 |
+
with space2:
|
257 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
258 |
+
metric = metric.lower()
|
|
|
259 |
|
260 |
+
if tab_section:
|
261 |
+
if tab_section in sum:
|
262 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
263 |
else:
|
264 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
265 |
+
draw_table(tab_section, metric)
|
|
|
|
|
266 |
|
267 |
|
268 |
def speech_question_answering_singlish():
|
269 |
st.title("Task: Spoken Question Answering - Singlish")
|
270 |
|
271 |
sum = ['Overall']
|
272 |
+
dataset_list = [
|
|
|
273 |
'MNSC-PART3-SQA',
|
274 |
'MNSC-PART4-SQA',
|
275 |
'MNSC-PART5-SQA',
|
276 |
'MNSC-PART6-SQA',
|
277 |
]
|
278 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
279 |
|
280 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
281 |
|
282 |
+
with space1:
|
283 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
284 |
+
with space2:
|
285 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
286 |
+
metric = metric.lower()
|
287 |
|
288 |
+
if tab_section:
|
289 |
+
if tab_section in sum:
|
290 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
291 |
else:
|
292 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
293 |
+
draw_table(tab_section, metric)
|
294 |
|
295 |
|
296 |
def spoken_dialogue_summarization_singlish():
|
297 |
st.title("Task: Spoken Dialogue Summarization - Singlish")
|
298 |
|
299 |
sum = ['Overall']
|
300 |
+
dataset_list = [
|
|
|
301 |
'MNSC-PART3-SDS',
|
302 |
'MNSC-PART4-SDS',
|
303 |
'MNSC-PART5-SDS',
|
304 |
'MNSC-PART6-SDS',
|
305 |
]
|
306 |
+
filters_1_list = sum + dataset_list
|
307 |
|
308 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
|
|
309 |
|
310 |
+
with space1:
|
311 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
312 |
+
with space2:
|
313 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
314 |
+
metric = metric.lower()
|
315 |
|
316 |
+
if tab_section:
|
317 |
+
if tab_section in sum:
|
318 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
319 |
else:
|
320 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
321 |
+
draw_table(tab_section, metric)
|
322 |
|
323 |
|
324 |
|
|
|
327 |
st.title("Task: Speech Instruction")
|
328 |
|
329 |
sum = ['Overall']
|
330 |
+
dataset_list = ['OpenHermes-Audio',
|
|
|
331 |
'ALPACA-Audio',
|
332 |
]
|
333 |
+
filters_1_list = sum + dataset_list
|
334 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
335 |
|
336 |
+
with space1:
|
337 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
338 |
+
with space2:
|
339 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
340 |
+
metric = metric.lower()
|
|
|
341 |
|
342 |
+
if tab_section:
|
343 |
+
if tab_section in sum:
|
344 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
345 |
else:
|
346 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
347 |
+
draw_table(tab_section, metric)
|
|
|
348 |
|
349 |
|
350 |
|
351 |
def audio_captioning():
|
352 |
st.title("Task: Audio Captioning")
|
353 |
|
354 |
+
dataset_list = [ 'WavCaps',
|
355 |
'AudioCaps',
|
356 |
]
|
|
|
357 |
|
358 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
359 |
|
360 |
+
with space1:
|
361 |
+
tab_section = st.selectbox('Dataset', dataset_list)
|
362 |
+
with space2:
|
363 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE', 'METEOR'])
|
364 |
+
metric = metric.lower()
|
|
|
|
|
|
|
|
|
365 |
|
366 |
+
if tab_section:
|
367 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
368 |
+
draw_table(tab_section, metric)
|
369 |
|
370 |
|
371 |
def audio_scene_question_answering():
|
372 |
st.title("Task: Audio Scene Question Answering")
|
373 |
|
374 |
sum = ['Overall']
|
375 |
+
dataset_list = ['Clotho-AQA',
|
|
|
376 |
'WavCaps-QA',
|
377 |
'AudioCaps-QA']
|
378 |
|
379 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
+
with space1:
|
384 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
385 |
+
with space2:
|
386 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
387 |
+
metric = metric.lower()
|
388 |
|
389 |
+
if tab_section:
|
390 |
+
if tab_section in sum:
|
391 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
392 |
else:
|
393 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
394 |
+
draw_table(tab_section, metric)
|
395 |
+
|
396 |
|
397 |
|
398 |
|
|
|
401 |
st.title("Task: Accent Recognition")
|
402 |
|
403 |
sum = ['Overall']
|
404 |
+
dataset_list = [
|
405 |
'VoxCeleb-Accent',
|
406 |
'MNSC-AR-Sentence',
|
407 |
'MNSC-AR-Dialogue',
|
408 |
]
|
409 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
410 |
|
411 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
412 |
|
413 |
+
with space1:
|
414 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
415 |
+
with space2:
|
416 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
417 |
+
metric = metric.lower()
|
418 |
|
419 |
+
if tab_section:
|
420 |
+
if tab_section in sum:
|
421 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
422 |
else:
|
423 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
424 |
+
draw_table(tab_section, metric)
|
|
|
425 |
|
426 |
|
427 |
|
|
|
429 |
st.title("Task: Gender Recognition")
|
430 |
|
431 |
sum = ['Overall']
|
432 |
+
dataset_list = [
|
|
|
433 |
'VoxCeleb-Gender',
|
434 |
'IEMOCAP-Gender'
|
435 |
]
|
436 |
+
filters_1_list = sum + dataset_list
|
|
|
437 |
|
438 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
439 |
|
440 |
+
with space1:
|
441 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
442 |
+
with space2:
|
443 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
444 |
+
metric = metric.lower()
|
445 |
+
|
446 |
+
if tab_section:
|
447 |
+
if tab_section in sum:
|
448 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
449 |
+
else:
|
450 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
451 |
+
draw_table(tab_section, metric)
|
452 |
+
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
|
457 |
+
def emotion_recognition():
|
458 |
+
st.title("Task: Emotion Recognition")
|
459 |
+
|
460 |
+
sum = ['Overall']
|
461 |
+
dataset_list = [
|
462 |
+
'IEMOCAP-Emotion',
|
463 |
+
'MELD-Sentiment',
|
464 |
+
'MELD-Emotion',
|
465 |
+
]
|
466 |
+
filters_1_list = sum + dataset_list
|
467 |
+
|
468 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
469 |
|
470 |
+
with space1:
|
471 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
472 |
+
with space2:
|
473 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
474 |
+
metric = metric.lower()
|
475 |
+
|
476 |
+
if tab_section:
|
477 |
+
if tab_section in sum:
|
478 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
479 |
else:
|
480 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
481 |
+
draw_table(tab_section, metric)
|
482 |
|
483 |
|
484 |
|
|
|
488 |
|
489 |
sum = ['Overall']
|
490 |
|
491 |
+
dataset_list = ['MuChoMusic',
|
492 |
]
|
493 |
|
494 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
495 |
|
496 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
|
|
497 |
|
498 |
+
with space1:
|
499 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
500 |
+
with space2:
|
501 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
502 |
+
metric = metric.lower()
|
|
|
|
|
|
|
503 |
|
504 |
+
if tab_section:
|
505 |
+
if tab_section in sum:
|
506 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
507 |
+
else:
|
508 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
509 |
+
draw_table(tab_section, metric)
|
510 |
|
511 |
|
512 |
|
|
|
517 |
def under_development():
|
518 |
st.title("Task: Under Development")
|
519 |
|
520 |
+
dataset_list = [
|
|
|
521 |
'CNA',
|
522 |
'IDPC',
|
523 |
'Parliament',
|
|
|
532 |
'YTB-SQA-Batch1',
|
533 |
'YTB-SDS-Batch1',
|
534 |
'YTB-PQA-Batch1',
|
|
|
535 |
]
|
536 |
|
537 |
+
filters_1_list = dataset_list
|
|
|
|
|
|
|
|
|
|
|
538 |
|
539 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
540 |
|
541 |
+
with space1:
|
542 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
543 |
+
with space2:
|
544 |
+
if tab_section in [
|
545 |
+
'CNA',
|
546 |
+
'IDPC',
|
547 |
+
'Parliament',
|
548 |
+
'UKUS-News',
|
549 |
+
'Mediacorp',
|
550 |
+
'IDPC-Short',
|
551 |
+
'Parliament-Short',
|
552 |
+
'UKUS-News-Short',
|
553 |
+
'Mediacorp-Short',
|
554 |
+
'YTB-ASR-Batch1',
|
555 |
+
'YTB-ASR-Batch2',
|
556 |
+
]:
|
557 |
+
metric = st.selectbox('Metric', ['WER'])
|
558 |
+
metric = metric.lower()
|
559 |
+
elif tab_section in [
|
560 |
+
'YTB-SQA-Batch1',
|
561 |
+
'YTB-SDS-Batch1',
|
562 |
+
'YTB-PQA-Batch1',
|
563 |
+
]:
|
564 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
565 |
+
metric = metric.lower()
|
566 |
+
else:
|
567 |
+
raise ValueError('Invalid dataset')
|
568 |
|
569 |
+
|
570 |
+
if tab_section:
|
571 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
572 |
+
draw_table(tab_section, metric)
|
573 |
|
574 |
|
575 |
def mmau_evaluation():
|
app/summarization.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
from streamlit_echarts import st_echarts
|
5 |
from streamlit.components.v1 import html
|
6 |
# from PIL import Image
|
@@ -14,20 +17,27 @@ from model_information import get_dataframe
|
|
14 |
|
15 |
info_df = get_dataframe()
|
16 |
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
for
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
selected_columns = [i for i in chart_data.columns if i != 'Model']
|
33 |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
|
@@ -81,7 +91,7 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
81 |
# Format numeric columns to 2 decimal places
|
82 |
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
|
83 |
|
84 |
-
if
|
85 |
ascend = True
|
86 |
else:
|
87 |
ascend= False
|
@@ -124,4 +134,4 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
124 |
)
|
125 |
|
126 |
# Only report the last metrics
|
127 |
-
st.markdown(f'###### Metric: {metrics_info[
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
|
5 |
+
import json
|
6 |
+
|
7 |
from streamlit_echarts import st_echarts
|
8 |
from streamlit.components.v1 import html
|
9 |
# from PIL import Image
|
|
|
17 |
|
18 |
info_df = get_dataframe()
|
19 |
|
20 |
+
def sum_table_mulit_metrix(dataset_displayname_list, metric):
|
21 |
|
22 |
+
with open('organize_model_results.json', 'r') as f:
|
23 |
+
organize_model_results = json.load(f)
|
24 |
|
25 |
+
dataset_results = {}
|
26 |
+
|
27 |
+
for dataset_displayname in dataset_displayname_list:
|
28 |
+
dataset_nickname = displayname2datasetname[dataset_displayname]
|
29 |
+
model_results = organize_model_results[dataset_nickname][metric]
|
30 |
+
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
31 |
+
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
|
32 |
+
|
33 |
+
dataset_results[dataset_displayname] = model_results
|
34 |
+
|
35 |
+
df_results = pd.DataFrame(dataset_results)
|
36 |
+
|
37 |
+
# Reset index to have models as a column
|
38 |
+
df_results.reset_index(inplace=True)
|
39 |
+
df_results.rename(columns={"index": "Model"}, inplace=True)
|
40 |
+
chart_data = df_results
|
41 |
|
42 |
selected_columns = [i for i in chart_data.columns if i != 'Model']
|
43 |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
|
|
|
91 |
# Format numeric columns to 2 decimal places
|
92 |
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
|
93 |
|
94 |
+
if metric == 'wer':
|
95 |
ascend = True
|
96 |
else:
|
97 |
ascend= False
|
|
|
134 |
)
|
135 |
|
136 |
# Only report the last metrics
|
137 |
+
st.markdown(f'###### Metric: {metrics_info[metric]}')
|