Spaces:
Running
on
Zero
Running
on
Zero
likunchang
commited on
Commit
Β·
8f54436
1
Parent(s):
468111e
debug
Browse files
app.py
CHANGED
@@ -1,30 +1,263 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
# Text to Image function with thinking option and hyperparameters
|
|
|
5 |
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
6 |
timestep_shift=3.0, num_timesteps=50,
|
7 |
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
8 |
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
9 |
seed=0, image_ratio="1:1"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
# Image Understanding function with thinking option and hyperparameters
|
|
|
15 |
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
16 |
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
# Image Editing function with thinking option and hyperparameters
|
|
|
21 |
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
22 |
cfg_img_scale=2.0, cfg_interval=0.0,
|
23 |
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
24 |
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
25 |
do_sample=False, text_temperature=0.3, seed=0):
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Helper function to load example images
|
30 |
def load_example_image(image_path):
|
@@ -34,13 +267,10 @@ def load_example_image(image_path):
|
|
34 |
print(f"Error loading example image: {e}")
|
35 |
return None
|
36 |
|
|
|
37 |
# Gradio UI
|
38 |
with gr.Blocks() as demo:
|
39 |
-
gr.Markdown(""
|
40 |
-
<div>
|
41 |
-
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
|
42 |
-
</div>
|
43 |
-
""")
|
44 |
|
45 |
with gr.Tab("π Text to Image"):
|
46 |
txt_input = gr.Textbox(
|
@@ -127,7 +357,7 @@ with gr.Blocks() as demo:
|
|
127 |
)
|
128 |
|
129 |
with gr.Column(scale=1):
|
130 |
-
edit_image_output = gr.
|
131 |
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
132 |
|
133 |
with gr.Row():
|
@@ -233,45 +463,8 @@ with gr.Blocks() as demo:
|
|
233 |
outputs=txt_output
|
234 |
)
|
235 |
|
236 |
-
gr.Markdown(
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
alt="BAGEL Website"
|
242 |
-
/>
|
243 |
-
</a>
|
244 |
-
<a href="https://arxiv.org/abs/2505.14683">
|
245 |
-
<img
|
246 |
-
src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
|
247 |
-
alt="BAGEL Paper on arXiv"
|
248 |
-
/>
|
249 |
-
</a>
|
250 |
-
<a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
|
251 |
-
<img
|
252 |
-
src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
|
253 |
-
alt="BAGEL on Hugging Face"
|
254 |
-
/>
|
255 |
-
</a>
|
256 |
-
<a href="https://demo.bagel-ai.org/">
|
257 |
-
<img
|
258 |
-
src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
|
259 |
-
alt="BAGEL Demo"
|
260 |
-
/>
|
261 |
-
</a>
|
262 |
-
<a href="https://discord.gg/Z836xxzy">
|
263 |
-
<img
|
264 |
-
src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
|
265 |
-
alt="BAGEL Discord"
|
266 |
-
/>
|
267 |
-
</a>
|
268 |
-
<a href="mailto:[email protected]">
|
269 |
-
<img
|
270 |
-
src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
|
271 |
-
alt="BAGEL Email"
|
272 |
-
/>
|
273 |
-
</a>
|
274 |
-
</div>
|
275 |
-
""")
|
276 |
-
|
277 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
import subprocess
|
8 |
+
subprocess.run(
|
9 |
+
"pip install flash-attn --no-build-isolation",
|
10 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
11 |
+
shell=True,
|
12 |
+
)
|
13 |
+
|
14 |
+
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
|
15 |
from PIL import Image
|
16 |
|
17 |
+
from data.data_utils import add_special_tokens, pil_img2rgb
|
18 |
+
from data.transforms import ImageTransform
|
19 |
+
from inferencer import InterleaveInferencer
|
20 |
+
from modeling.autoencoder import load_ae
|
21 |
+
from modeling.bagel import (
|
22 |
+
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
|
23 |
+
SiglipVisionConfig, SiglipVisionModel
|
24 |
+
)
|
25 |
+
from modeling.qwen2 import Qwen2Tokenizer
|
26 |
+
|
27 |
+
from huggingface_hub import snapshot_download
|
28 |
+
|
29 |
+
save_dir = "./model_weights"
|
30 |
+
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
|
31 |
+
cache_dir = save_dir + "/cache"
|
32 |
+
|
33 |
+
snapshot_download(
|
34 |
+
cache_dir=cache_dir,
|
35 |
+
local_dir=save_dir,
|
36 |
+
repo_id=repo_id,
|
37 |
+
local_dir_use_symlinks=False,
|
38 |
+
resume_download=True,
|
39 |
+
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
|
40 |
+
)
|
41 |
+
|
42 |
+
# Model Initialization
|
43 |
+
model_path = save_dir
|
44 |
+
|
45 |
+
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
|
46 |
+
llm_config.qk_norm = True
|
47 |
+
llm_config.tie_word_embeddings = False
|
48 |
+
llm_config.layer_module = "Qwen2MoTDecoderLayer"
|
49 |
+
|
50 |
+
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
|
51 |
+
vit_config.rope = False
|
52 |
+
vit_config.num_hidden_layers -= 1
|
53 |
+
|
54 |
+
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
|
55 |
+
|
56 |
+
config = BagelConfig(
|
57 |
+
visual_gen=True,
|
58 |
+
visual_und=True,
|
59 |
+
llm_config=llm_config,
|
60 |
+
vit_config=vit_config,
|
61 |
+
vae_config=vae_config,
|
62 |
+
vit_max_num_patch_per_side=70,
|
63 |
+
connector_act='gelu_pytorch_tanh',
|
64 |
+
latent_patch_size=2,
|
65 |
+
max_latent_size=64,
|
66 |
+
)
|
67 |
+
|
68 |
+
with init_empty_weights():
|
69 |
+
language_model = Qwen2ForCausalLM(llm_config)
|
70 |
+
vit_model = SiglipVisionModel(vit_config)
|
71 |
+
model = Bagel(language_model, vit_model, config)
|
72 |
+
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
|
73 |
+
|
74 |
+
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
|
75 |
+
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
|
76 |
+
|
77 |
+
vae_transform = ImageTransform(1024, 512, 16)
|
78 |
+
vit_transform = ImageTransform(980, 224, 14)
|
79 |
+
|
80 |
+
# Model Loading and Multi GPU Infernece Preparing
|
81 |
+
device_map = infer_auto_device_map(
|
82 |
+
model,
|
83 |
+
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
|
84 |
+
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
|
85 |
+
)
|
86 |
+
|
87 |
+
same_device_modules = [
|
88 |
+
'language_model.model.embed_tokens',
|
89 |
+
'time_embedder',
|
90 |
+
'latent_pos_embed',
|
91 |
+
'vae2llm',
|
92 |
+
'llm2vae',
|
93 |
+
'connector',
|
94 |
+
'vit_pos_embed'
|
95 |
+
]
|
96 |
+
|
97 |
+
if torch.cuda.device_count() == 1:
|
98 |
+
first_device = device_map.get(same_device_modules[0], "cuda:0")
|
99 |
+
for k in same_device_modules:
|
100 |
+
if k in device_map:
|
101 |
+
device_map[k] = first_device
|
102 |
+
else:
|
103 |
+
device_map[k] = "cuda:0"
|
104 |
+
else:
|
105 |
+
first_device = device_map.get(same_device_modules[0])
|
106 |
+
for k in same_device_modules:
|
107 |
+
if k in device_map:
|
108 |
+
device_map[k] = first_device
|
109 |
+
|
110 |
+
model = load_checkpoint_and_dispatch(
|
111 |
+
model,
|
112 |
+
checkpoint=os.path.join(model_path, "ema.safetensors"),
|
113 |
+
device_map=device_map,
|
114 |
+
offload_buffers=True,
|
115 |
+
offload_folder="offload",
|
116 |
+
dtype=torch.bfloat16,
|
117 |
+
force_hooks=True,
|
118 |
+
).eval()
|
119 |
+
|
120 |
+
|
121 |
+
# Inferencer Preparing
|
122 |
+
inferencer = InterleaveInferencer(
|
123 |
+
model=model,
|
124 |
+
vae_model=vae_model,
|
125 |
+
tokenizer=tokenizer,
|
126 |
+
vae_transform=vae_transform,
|
127 |
+
vit_transform=vit_transform,
|
128 |
+
new_token_ids=new_token_ids,
|
129 |
+
)
|
130 |
+
|
131 |
+
def set_seed(seed):
|
132 |
+
"""Set random seeds for reproducibility"""
|
133 |
+
if seed > 0:
|
134 |
+
random.seed(seed)
|
135 |
+
np.random.seed(seed)
|
136 |
+
torch.manual_seed(seed)
|
137 |
+
if torch.cuda.is_available():
|
138 |
+
torch.cuda.manual_seed(seed)
|
139 |
+
torch.cuda.manual_seed_all(seed)
|
140 |
+
torch.backends.cudnn.deterministic = True
|
141 |
+
torch.backends.cudnn.benchmark = False
|
142 |
+
return seed
|
143 |
+
|
144 |
# Text to Image function with thinking option and hyperparameters
|
145 |
+
@spaces.GPU(duration=90)
|
146 |
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
147 |
timestep_shift=3.0, num_timesteps=50,
|
148 |
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
149 |
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
150 |
seed=0, image_ratio="1:1"):
|
151 |
+
# Set seed for reproducibility
|
152 |
+
set_seed(seed)
|
153 |
+
|
154 |
+
if image_ratio == "1:1":
|
155 |
+
image_shapes = (1024, 1024)
|
156 |
+
elif image_ratio == "4:3":
|
157 |
+
image_shapes = (768, 1024)
|
158 |
+
elif image_ratio == "3:4":
|
159 |
+
image_shapes = (1024, 768)
|
160 |
+
elif image_ratio == "16:9":
|
161 |
+
image_shapes = (576, 1024)
|
162 |
+
elif image_ratio == "9:16":
|
163 |
+
image_shapes = (1024, 576)
|
164 |
+
|
165 |
+
# Set hyperparameters
|
166 |
+
inference_hyper = dict(
|
167 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
168 |
+
do_sample=do_sample if show_thinking else False,
|
169 |
+
text_temperature=text_temperature if show_thinking else 0.3,
|
170 |
+
cfg_text_scale=cfg_text_scale,
|
171 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
172 |
+
timestep_shift=timestep_shift,
|
173 |
+
num_timesteps=num_timesteps,
|
174 |
+
cfg_renorm_min=cfg_renorm_min,
|
175 |
+
cfg_renorm_type=cfg_renorm_type,
|
176 |
+
image_shapes=image_shapes,
|
177 |
+
)
|
178 |
|
179 |
+
result = {"text": "", "image": None}
|
180 |
+
# Call inferencer with or without think parameter based on user choice
|
181 |
+
for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
|
182 |
+
if type(i) == str:
|
183 |
+
result["text"] += i
|
184 |
+
else:
|
185 |
+
result["image"] = i
|
186 |
+
|
187 |
+
yield result["image"], result.get("text", None)
|
188 |
|
189 |
|
190 |
# Image Understanding function with thinking option and hyperparameters
|
191 |
+
@spaces.GPU(duration=90)
|
192 |
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
193 |
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
194 |
+
if image is None:
|
195 |
+
return "Please upload an image."
|
196 |
+
|
197 |
+
if isinstance(image, np.ndarray):
|
198 |
+
image = Image.fromarray(image)
|
199 |
+
|
200 |
+
image = pil_img2rgb(image)
|
201 |
+
|
202 |
+
# Set hyperparameters
|
203 |
+
inference_hyper = dict(
|
204 |
+
do_sample=do_sample,
|
205 |
+
text_temperature=text_temperature,
|
206 |
+
max_think_token_n=max_new_tokens, # Set max_length
|
207 |
+
)
|
208 |
+
|
209 |
+
result = {"text": "", "image": None}
|
210 |
+
# Use show_thinking parameter to control thinking process
|
211 |
+
for i in inferencer(image=image, text=prompt, think=show_thinking,
|
212 |
+
understanding_output=True, **inference_hyper):
|
213 |
+
if type(i) == str:
|
214 |
+
result["text"] += i
|
215 |
+
else:
|
216 |
+
result["image"] = i
|
217 |
+
yield result["text"]
|
218 |
|
219 |
|
220 |
# Image Editing function with thinking option and hyperparameters
|
221 |
+
@spaces.GPU(duration=90)
|
222 |
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
223 |
cfg_img_scale=2.0, cfg_interval=0.0,
|
224 |
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
225 |
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
226 |
do_sample=False, text_temperature=0.3, seed=0):
|
227 |
+
# Set seed for reproducibility
|
228 |
+
set_seed(seed)
|
229 |
+
|
230 |
+
if image is None:
|
231 |
+
return "Please upload an image.", ""
|
232 |
+
|
233 |
+
if isinstance(image, np.ndarray):
|
234 |
+
image = Image.fromarray(image)
|
235 |
+
|
236 |
+
image = pil_img2rgb(image)
|
237 |
+
|
238 |
+
# Set hyperparameters
|
239 |
+
inference_hyper = dict(
|
240 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
241 |
+
do_sample=do_sample if show_thinking else False,
|
242 |
+
text_temperature=text_temperature if show_thinking else 0.3,
|
243 |
+
cfg_text_scale=cfg_text_scale,
|
244 |
+
cfg_img_scale=cfg_img_scale,
|
245 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
246 |
+
timestep_shift=timestep_shift,
|
247 |
+
num_timesteps=num_timesteps,
|
248 |
+
cfg_renorm_min=cfg_renorm_min,
|
249 |
+
cfg_renorm_type=cfg_renorm_type,
|
250 |
+
)
|
251 |
+
|
252 |
+
# Include thinking parameter based on user choice
|
253 |
+
result = {"text": "", "image": None}
|
254 |
+
for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
|
255 |
+
if type(i) == str:
|
256 |
+
result["text"] += i
|
257 |
+
else:
|
258 |
+
result["image"] = i
|
259 |
+
|
260 |
+
yield result["image"], result.get("text", "")
|
261 |
|
262 |
# Helper function to load example images
|
263 |
def load_example_image(image_path):
|
|
|
267 |
print(f"Error loading example image: {e}")
|
268 |
return None
|
269 |
|
270 |
+
|
271 |
# Gradio UI
|
272 |
with gr.Blocks() as demo:
|
273 |
+
gr.Markdown("# π₯― [BAGEL](https://bagel-ai.org/)")
|
|
|
|
|
|
|
|
|
274 |
|
275 |
with gr.Tab("π Text to Image"):
|
276 |
txt_input = gr.Textbox(
|
|
|
357 |
)
|
358 |
|
359 |
with gr.Column(scale=1):
|
360 |
+
edit_image_output = gr.Image(label="Result")
|
361 |
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
362 |
|
363 |
with gr.Row():
|
|
|
463 |
outputs=txt_output
|
464 |
)
|
465 |
|
466 |
+
gr.Markdown(
|
467 |
+
"π[Website](https://bagel-ai.org/) π[Report](https://arxiv.org/abs/2505.14683) π€[Model](https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT) π[Demo](https://demo.bagel-ai.org/) π¬[Discord](https://discord.gg/Z836xxzy) π§[Contact](mailto:[email protected])"
|
468 |
+
)
|
469 |
+
|
470 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|