Spaces:
Running
on
Zero
Running
on
Zero
likunchang
commited on
Commit
·
c6b9a17
1
Parent(s):
717846a
init
Browse files
app.py
CHANGED
@@ -1,264 +1,30 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import random
|
7 |
-
import subprocess
|
8 |
-
subprocess.run(
|
9 |
-
"pip install flash-attn --no-build-isolation",
|
10 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
11 |
-
shell=True,
|
12 |
-
)
|
13 |
-
|
14 |
-
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
|
15 |
from PIL import Image
|
16 |
|
17 |
-
from data.data_utils import add_special_tokens, pil_img2rgb
|
18 |
-
from data.transforms import ImageTransform
|
19 |
-
from inferencer import InterleaveInferencer
|
20 |
-
from modeling.autoencoder import load_ae
|
21 |
-
from modeling.bagel import (
|
22 |
-
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
|
23 |
-
SiglipVisionConfig, SiglipVisionModel
|
24 |
-
)
|
25 |
-
from modeling.qwen2 import Qwen2Tokenizer
|
26 |
-
|
27 |
-
from huggingface_hub import snapshot_download
|
28 |
-
|
29 |
-
save_dir = "./model_weights"
|
30 |
-
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
|
31 |
-
cache_dir = save_dir + "/cache"
|
32 |
-
|
33 |
-
snapshot_download(
|
34 |
-
cache_dir=cache_dir,
|
35 |
-
local_dir=save_dir,
|
36 |
-
repo_id=repo_id,
|
37 |
-
local_dir_use_symlinks=False,
|
38 |
-
resume_download=True,
|
39 |
-
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
|
40 |
-
)
|
41 |
-
|
42 |
-
# Model Initialization
|
43 |
-
model_path = save_dir
|
44 |
-
|
45 |
-
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
|
46 |
-
llm_config.qk_norm = True
|
47 |
-
llm_config.tie_word_embeddings = False
|
48 |
-
llm_config.layer_module = "Qwen2MoTDecoderLayer"
|
49 |
-
|
50 |
-
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
|
51 |
-
vit_config.rope = False
|
52 |
-
vit_config.num_hidden_layers -= 1
|
53 |
-
|
54 |
-
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
|
55 |
-
|
56 |
-
config = BagelConfig(
|
57 |
-
visual_gen=True,
|
58 |
-
visual_und=True,
|
59 |
-
llm_config=llm_config,
|
60 |
-
vit_config=vit_config,
|
61 |
-
vae_config=vae_config,
|
62 |
-
vit_max_num_patch_per_side=70,
|
63 |
-
connector_act='gelu_pytorch_tanh',
|
64 |
-
latent_patch_size=2,
|
65 |
-
max_latent_size=64,
|
66 |
-
)
|
67 |
-
|
68 |
-
with init_empty_weights():
|
69 |
-
language_model = Qwen2ForCausalLM(llm_config)
|
70 |
-
vit_model = SiglipVisionModel(vit_config)
|
71 |
-
model = Bagel(language_model, vit_model, config)
|
72 |
-
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
|
73 |
-
|
74 |
-
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
|
75 |
-
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
|
76 |
-
|
77 |
-
vae_transform = ImageTransform(1024, 512, 16)
|
78 |
-
vit_transform = ImageTransform(980, 224, 14)
|
79 |
-
|
80 |
-
# Model Loading and Multi GPU Infernece Preparing
|
81 |
-
device_map = infer_auto_device_map(
|
82 |
-
model,
|
83 |
-
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
|
84 |
-
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
|
85 |
-
)
|
86 |
-
|
87 |
-
same_device_modules = [
|
88 |
-
'language_model.model.embed_tokens',
|
89 |
-
'time_embedder',
|
90 |
-
'latent_pos_embed',
|
91 |
-
'vae2llm',
|
92 |
-
'llm2vae',
|
93 |
-
'connector',
|
94 |
-
'vit_pos_embed'
|
95 |
-
]
|
96 |
-
|
97 |
-
if torch.cuda.device_count() == 1:
|
98 |
-
first_device = device_map.get(same_device_modules[0], "cuda:0")
|
99 |
-
for k in same_device_modules:
|
100 |
-
if k in device_map:
|
101 |
-
device_map[k] = first_device
|
102 |
-
else:
|
103 |
-
device_map[k] = "cuda:0"
|
104 |
-
else:
|
105 |
-
first_device = device_map.get(same_device_modules[0])
|
106 |
-
for k in same_device_modules:
|
107 |
-
if k in device_map:
|
108 |
-
device_map[k] = first_device
|
109 |
-
|
110 |
-
model = load_checkpoint_and_dispatch(
|
111 |
-
model,
|
112 |
-
checkpoint=os.path.join(model_path, "ema.safetensors"),
|
113 |
-
device_map=device_map,
|
114 |
-
offload_buffers=True,
|
115 |
-
offload_folder="offload",
|
116 |
-
dtype=torch.bfloat16,
|
117 |
-
force_hooks=True,
|
118 |
-
).eval()
|
119 |
-
|
120 |
-
|
121 |
-
# Inferencer Preparing
|
122 |
-
inferencer = InterleaveInferencer(
|
123 |
-
model=model,
|
124 |
-
vae_model=vae_model,
|
125 |
-
tokenizer=tokenizer,
|
126 |
-
vae_transform=vae_transform,
|
127 |
-
vit_transform=vit_transform,
|
128 |
-
new_token_ids=new_token_ids,
|
129 |
-
)
|
130 |
-
|
131 |
-
def set_seed(seed):
|
132 |
-
"""Set random seeds for reproducibility"""
|
133 |
-
if seed > 0:
|
134 |
-
random.seed(seed)
|
135 |
-
np.random.seed(seed)
|
136 |
-
torch.manual_seed(seed)
|
137 |
-
if torch.cuda.is_available():
|
138 |
-
torch.cuda.manual_seed(seed)
|
139 |
-
torch.cuda.manual_seed_all(seed)
|
140 |
-
torch.backends.cudnn.deterministic = True
|
141 |
-
torch.backends.cudnn.benchmark = False
|
142 |
-
return seed
|
143 |
-
|
144 |
# Text to Image function with thinking option and hyperparameters
|
145 |
-
@spaces.GPU(duration=90)
|
146 |
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
147 |
timestep_shift=3.0, num_timesteps=50,
|
148 |
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
149 |
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
150 |
seed=0, image_ratio="1:1"):
|
151 |
-
# Set seed for reproducibility
|
152 |
-
set_seed(seed)
|
153 |
-
|
154 |
-
if image_ratio == "1:1":
|
155 |
-
image_shapes = (1024, 1024)
|
156 |
-
elif image_ratio == "4:3":
|
157 |
-
image_shapes = (768, 1024)
|
158 |
-
elif image_ratio == "3:4":
|
159 |
-
image_shapes = (1024, 768)
|
160 |
-
elif image_ratio == "16:9":
|
161 |
-
image_shapes = (576, 1024)
|
162 |
-
elif image_ratio == "9:16":
|
163 |
-
image_shapes = (1024, 576)
|
164 |
-
|
165 |
-
# Set hyperparameters
|
166 |
-
inference_hyper = dict(
|
167 |
-
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
168 |
-
do_sample=do_sample if show_thinking else False,
|
169 |
-
text_temperature=text_temperature if show_thinking else 0.3,
|
170 |
-
cfg_text_scale=cfg_text_scale,
|
171 |
-
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
172 |
-
timestep_shift=timestep_shift,
|
173 |
-
num_timesteps=num_timesteps,
|
174 |
-
cfg_renorm_min=cfg_renorm_min,
|
175 |
-
cfg_renorm_type=cfg_renorm_type,
|
176 |
-
image_shapes=image_shapes,
|
177 |
-
)
|
178 |
|
179 |
-
|
180 |
-
# Call inferencer with or without think parameter based on user choice
|
181 |
-
for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
|
182 |
-
print(type(i))
|
183 |
-
if type(i) == str:
|
184 |
-
result["text"] += i
|
185 |
-
else:
|
186 |
-
result["image"] = i
|
187 |
-
|
188 |
-
yield result["image"], result.get("text", None)
|
189 |
|
190 |
|
191 |
# Image Understanding function with thinking option and hyperparameters
|
192 |
-
@spaces.GPU(duration=90)
|
193 |
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
194 |
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
195 |
-
|
196 |
-
return "Please upload an image."
|
197 |
-
|
198 |
-
if isinstance(image, np.ndarray):
|
199 |
-
image = Image.fromarray(image)
|
200 |
-
|
201 |
-
image = pil_img2rgb(image)
|
202 |
-
|
203 |
-
# Set hyperparameters
|
204 |
-
inference_hyper = dict(
|
205 |
-
do_sample=do_sample,
|
206 |
-
text_temperature=text_temperature,
|
207 |
-
max_think_token_n=max_new_tokens, # Set max_length
|
208 |
-
)
|
209 |
-
|
210 |
-
result = {"text": "", "image": None}
|
211 |
-
# Use show_thinking parameter to control thinking process
|
212 |
-
for i in inferencer(image=image, text=prompt, think=show_thinking,
|
213 |
-
understanding_output=True, **inference_hyper):
|
214 |
-
if type(i) == str:
|
215 |
-
result["text"] += i
|
216 |
-
else:
|
217 |
-
result["image"] = i
|
218 |
-
yield result["text"]
|
219 |
|
220 |
|
221 |
# Image Editing function with thinking option and hyperparameters
|
222 |
-
@spaces.GPU(duration=90)
|
223 |
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
224 |
cfg_img_scale=2.0, cfg_interval=0.0,
|
225 |
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
226 |
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
227 |
do_sample=False, text_temperature=0.3, seed=0):
|
228 |
-
# Set seed for reproducibility
|
229 |
-
set_seed(seed)
|
230 |
-
|
231 |
-
if image is None:
|
232 |
-
return "Please upload an image.", ""
|
233 |
|
234 |
-
|
235 |
-
image = Image.fromarray(image)
|
236 |
-
|
237 |
-
image = pil_img2rgb(image)
|
238 |
-
|
239 |
-
# Set hyperparameters
|
240 |
-
inference_hyper = dict(
|
241 |
-
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
242 |
-
do_sample=do_sample if show_thinking else False,
|
243 |
-
text_temperature=text_temperature if show_thinking else 0.3,
|
244 |
-
cfg_text_scale=cfg_text_scale,
|
245 |
-
cfg_img_scale=cfg_img_scale,
|
246 |
-
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
247 |
-
timestep_shift=timestep_shift,
|
248 |
-
num_timesteps=num_timesteps,
|
249 |
-
cfg_renorm_min=cfg_renorm_min,
|
250 |
-
cfg_renorm_type=cfg_renorm_type,
|
251 |
-
)
|
252 |
-
|
253 |
-
# Include thinking parameter based on user choice
|
254 |
-
result = {"text": "", "image": None}
|
255 |
-
for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
|
256 |
-
if type(i) == str:
|
257 |
-
result["text"] += i
|
258 |
-
else:
|
259 |
-
result["image"] = i
|
260 |
-
|
261 |
-
yield result["image"], result.get("text", "")
|
262 |
|
263 |
# Helper function to load example images
|
264 |
def load_example_image(image_path):
|
@@ -268,7 +34,6 @@ def load_example_image(image_path):
|
|
268 |
print(f"Error loading example image: {e}")
|
269 |
return None
|
270 |
|
271 |
-
|
272 |
# Gradio UI
|
273 |
with gr.Blocks() as demo:
|
274 |
gr.Markdown("""
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
# Text to Image function with thinking option and hyperparameters
|
|
|
5 |
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
6 |
timestep_shift=3.0, num_timesteps=50,
|
7 |
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
8 |
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
9 |
seed=0, image_ratio="1:1"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
yield None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
# Image Understanding function with thinking option and hyperparameters
|
|
|
15 |
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
16 |
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
17 |
+
yield None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
# Image Editing function with thinking option and hyperparameters
|
|
|
21 |
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
22 |
cfg_img_scale=2.0, cfg_interval=0.0,
|
23 |
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
24 |
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
25 |
do_sample=False, text_temperature=0.3, seed=0):
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
yield None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Helper function to load example images
|
30 |
def load_example_image(image_path):
|
|
|
34 |
print(f"Error loading example image: {e}")
|
35 |
return None
|
36 |
|
|
|
37 |
# Gradio UI
|
38 |
with gr.Blocks() as demo:
|
39 |
gr.Markdown("""
|