Spaces:
Running
Running
File size: 1,416 Bytes
1317812 f31ac08 1317812 f31ac08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
MODEL_NAME = "microsoft/phi-4"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def chatbot_response(user_input, chat_history=[]):
"""Generates a response from the chatbot model."""
# Tokenize input and add chat history
input_ids = tokenizer.encode(user_input, return_tensors="pt")
# Generate response
output = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# Update chat history
chat_history.append((user_input, response))
return chat_history, "\n".join([f"You: {msg}\nBot: {res}" for msg, res in chat_history])
# Gradio Interface
with gr.Blocks() as chatbot_ui:
gr.Markdown("## Chatbot Interface")
chat_history = gr.State([]) # Stores the chat history
with gr.Row():
user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")
submit_button = gr.Button("Send")
with gr.Row():
chat_display = gr.Textbox(label="Chat History", lines=20, interactive=False)
# Event listener
submit_button.click(chatbot_response, inputs=[user_input, chat_history], outputs=[chat_history, chat_display])
chatbot_ui.launch()
|