|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "unsloth/phi-4-gguf" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
def generate_code(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=150) |
|
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_code |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_code, |
|
inputs=gr.Textbox(lines=5, label="Prompt"), |
|
outputs=gr.Code(language="python", label="Generated Code"), |
|
title="Code Generator with Unsloth Phi-4 GGUF", |
|
description="Enter a prompt to generate Python code using the Unsloth Phi-4 GGUF model." |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |