import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the Unsloth Phi-4 GGUF model and tokenizer model_name = "unsloth/phi-4-gguf" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Function to generate code based on user input def generate_code(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=150) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_code # Gradio interface interface = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=5, label="Prompt"), outputs=gr.Code(language="python", label="Generated Code"), title="Code Generator with Unsloth Phi-4 GGUF", description="Enter a prompt to generate Python code using the Unsloth Phi-4 GGUF model." ) if __name__ == "__main__": interface.launch()