CoffeBank commited on
Commit
ce79581
·
1 Parent(s): 8217bc2
NN_classifier/neural_net_t.py ADDED
@@ -0,0 +1,627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ from torch.utils.data import DataLoader, TensorDataset
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.metrics import classification_report, accuracy_score
9
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
10
+ from sklearn.impute import SimpleImputer
11
+ import matplotlib.pyplot as plt
12
+ import json
13
+ import joblib
14
+ import os
15
+ import seaborn as sns
16
+ from sklearn.model_selection import StratifiedKFold
17
+ from scipy import stats
18
+ import time
19
+ import argparse
20
+
21
+ def setup_gpu():
22
+ if torch.cuda.is_available():
23
+ return True
24
+ else:
25
+ print("No GPUs found. Using CPU.")
26
+ return False
27
+
28
+ GPU_AVAILABLE = setup_gpu()
29
+ DEVICE = torch.device('cuda' if GPU_AVAILABLE else 'cpu')
30
+
31
+ def load_data_from_json(directory_path):
32
+ if os.path.isfile(directory_path):
33
+ directory = os.path.dirname(directory_path)
34
+ else:
35
+ directory = directory_path
36
+
37
+ print(f"Loading JSON files from directory: {directory}")
38
+
39
+ json_files = [os.path.join(directory, f) for f in os.listdir(directory)
40
+ if f.endswith('.json') and os.path.isfile(os.path.join(directory, f))]
41
+
42
+ if not json_files:
43
+ raise ValueError(f"No JSON files found in directory {directory}")
44
+
45
+ print(f"Found {len(json_files)} JSON files")
46
+
47
+ all_data = []
48
+ for file_path in json_files:
49
+ try:
50
+ with open(file_path, 'r', encoding='utf-8') as f:
51
+ data_dict = json.load(f)
52
+ if 'data' in data_dict:
53
+ all_data.extend(data_dict['data'])
54
+ else:
55
+ print(f"Warning: 'data' key not found in {os.path.basename(file_path)}")
56
+ except Exception as e:
57
+ print(f"Error loading {os.path.basename(file_path)}: {str(e)}")
58
+
59
+ if not all_data:
60
+ raise ValueError("Failed to load data from JSON files")
61
+
62
+ df = pd.DataFrame(all_data)
63
+
64
+ label_mapping = {
65
+ 'ai': 'Raw AI',
66
+ 'human': 'Human',
67
+ 'ai+rew': 'Rephrased AI'
68
+ }
69
+
70
+ if 'source' in df.columns:
71
+ df['label'] = df['source'].map(lambda x: label_mapping.get(x, x))
72
+ else:
73
+ print("Warning: 'source' column not found, using default label")
74
+ df['label'] = 'Unknown'
75
+
76
+ return df
77
+
78
+ class Neural_Network(nn.Module):
79
+ def __init__(self, input_size, hidden_layers, num_classes, dropout_rate=0.2):
80
+ super(Neural_Network, self).__init__()
81
+
82
+ layers = []
83
+ prev_size = input_size
84
+
85
+ for hidden_size in hidden_layers:
86
+ layers.append(nn.Linear(prev_size, hidden_size))
87
+ layers.append(nn.ReLU())
88
+ layers.append(nn.Dropout(dropout_rate))
89
+ prev_size = hidden_size
90
+
91
+ layers.append(nn.Linear(prev_size, num_classes))
92
+ self.model = nn.Sequential(*layers)
93
+
94
+ def forward(self, x):
95
+ return self.model(x)
96
+
97
+ def build_neural_network(input_shape, num_classes, hidden_layers=[64, 32]):
98
+ model = Neural_Network(input_shape, hidden_layers, num_classes).to(DEVICE)
99
+ print(f"Model created with hidden layers {hidden_layers} on device: {DEVICE}")
100
+ return model
101
+
102
+ def plot_learning_curve(train_losses, val_losses):
103
+ plt.figure(figsize=(10, 6))
104
+ epochs = range(1, len(train_losses) + 1)
105
+
106
+ plt.plot(epochs, train_losses, 'b-', label='Training Loss')
107
+ plt.plot(epochs, val_losses, 'r-', label='Validation Loss')
108
+
109
+ plt.title('Learning Curve')
110
+ plt.xlabel('Epochs')
111
+ plt.ylabel('Loss')
112
+ plt.legend()
113
+ plt.grid(True)
114
+
115
+ os.makedirs('plots', exist_ok=True)
116
+ plt.savefig('plots/learning_curve.png')
117
+ plt.close()
118
+ print("Learning curve saved to plots/learning_curve.png")
119
+
120
+ def plot_accuracy_curve(train_accuracies, val_accuracies):
121
+ plt.figure(figsize=(10, 6))
122
+ epochs = range(1, len(train_accuracies) + 1)
123
+
124
+ plt.plot(epochs, train_accuracies, 'g-', label='Training Accuracy')
125
+ plt.plot(epochs, val_accuracies, 'm-', label='Validation Accuracy')
126
+
127
+ plt.title('Accuracy Curve')
128
+ plt.xlabel('Epochs')
129
+ plt.ylabel('Accuracy')
130
+ plt.legend()
131
+ plt.grid(True)
132
+
133
+ plt.ylim(0, 1.0)
134
+
135
+ os.makedirs('plots', exist_ok=True)
136
+ plt.savefig('plots/accuracy_curve.png')
137
+ plt.close()
138
+ print("Accuracy curve saved to plots/accuracy_curve.png")
139
+
140
+ def select_features(df, feature_config):
141
+ features_df = pd.DataFrame()
142
+
143
+ if feature_config.get('basic_scores', True):
144
+ if 'score_chat' in df.columns:
145
+ features_df['score_chat'] = df['score_chat']
146
+ if 'score_coder' in df.columns:
147
+ features_df['score_coder'] = df['score_coder']
148
+
149
+ if 'text_analysis' in df.columns:
150
+ if feature_config.get('basic_text_stats'):
151
+ for feature in feature_config['basic_text_stats']:
152
+ features_df[f'basic_{feature}'] = df['text_analysis'].apply(
153
+ lambda x: x.get('basic_stats', {}).get(feature, 0) if isinstance(x, dict) else 0
154
+ )
155
+
156
+ if feature_config.get('morphological'):
157
+ for feature in feature_config['morphological']:
158
+ if feature == 'pos_distribution':
159
+ pos_types = ['NOUN', 'VERB', 'ADJ', 'ADV', 'PROPN', 'DET', 'ADP', 'PRON', 'CCONJ', 'SCONJ']
160
+ for pos in pos_types:
161
+ features_df[f'pos_{pos}'] = df['text_analysis'].apply(
162
+ lambda x: x.get('morphological_analysis', {}).get('pos_distribution', {}).get(pos, 0)
163
+ if isinstance(x, dict) else 0
164
+ )
165
+ else:
166
+ features_df[f'morph_{feature}'] = df['text_analysis'].apply(
167
+ lambda x: x.get('morphological_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
168
+ )
169
+
170
+ if feature_config.get('syntactic'):
171
+ for feature in feature_config['syntactic']:
172
+ if feature == 'dependencies':
173
+ dep_types = ['nsubj', 'obj', 'amod', 'nmod', 'ROOT', 'punct', 'case']
174
+ for dep in dep_types:
175
+ features_df[f'dep_{dep}'] = df['text_analysis'].apply(
176
+ lambda x: x.get('syntactic_analysis', {}).get('dependencies', {}).get(dep, 0)
177
+ if isinstance(x, dict) else 0
178
+ )
179
+ else:
180
+ features_df[f'synt_{feature}'] = df['text_analysis'].apply(
181
+ lambda x: x.get('syntactic_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
182
+ )
183
+
184
+ if feature_config.get('entities'):
185
+ for feature in feature_config['entities']:
186
+ if feature == 'entity_types':
187
+ entity_types = ['PER', 'LOC', 'ORG']
188
+ for ent in entity_types:
189
+ features_df[f'ent_{ent}'] = df['text_analysis'].apply(
190
+ lambda x: x.get('named_entities', {}).get('entity_types', {}).get(ent, 0)
191
+ if isinstance(x, dict) else 0
192
+ )
193
+ else:
194
+ features_df[f'ent_{feature}'] = df['text_analysis'].apply(
195
+ lambda x: x.get('named_entities', {}).get(feature, 0) if isinstance(x, dict) else 0
196
+ )
197
+
198
+ if feature_config.get('diversity'):
199
+ for feature in feature_config['diversity']:
200
+ features_df[f'div_{feature}'] = df['text_analysis'].apply(
201
+ lambda x: x.get('lexical_diversity', {}).get(feature, 0) if isinstance(x, dict) else 0
202
+ )
203
+
204
+ if feature_config.get('structure'):
205
+ for feature in feature_config['structure']:
206
+ features_df[f'struct_{feature}'] = df['text_analysis'].apply(
207
+ lambda x: x.get('text_structure', {}).get(feature, 0) if isinstance(x, dict) else 0
208
+ )
209
+
210
+ if feature_config.get('readability'):
211
+ for feature in feature_config['readability']:
212
+ features_df[f'read_{feature}'] = df['text_analysis'].apply(
213
+ lambda x: x.get('readability', {}).get(feature, 0) if isinstance(x, dict) else 0
214
+ )
215
+
216
+ if feature_config.get('semantic'):
217
+ features_df['semantic_coherence'] = df['text_analysis'].apply(
218
+ lambda x: x.get('semantic_coherence', {}).get('avg_coherence_score', 0) if isinstance(x, dict) else 0
219
+ )
220
+
221
+ print(f"Generated {len(features_df.columns)} features")
222
+ return features_df
223
+
224
+ def train_neural_network(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
225
+ model_config=None,
226
+ feature_config=None,
227
+ random_state=42):
228
+ if model_config is None:
229
+ model_config = {
230
+ 'hidden_layers': [128, 96, 64, 32],
231
+ 'dropout_rate': 0.1
232
+ }
233
+
234
+ if feature_config is None:
235
+ feature_config = {
236
+ 'basic_scores': True,
237
+ 'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
238
+ 'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
239
+ 'syntactic': ['dependencies', 'noun_chunks'],
240
+ 'entities': ['total_entities', 'entity_types'],
241
+ 'diversity': ['ttr', 'mtld'],
242
+ 'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
243
+ 'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
244
+ 'semantic': True
245
+ }
246
+
247
+ df = load_data_from_json(directory_path)
248
+
249
+ features_df = select_features(df, feature_config)
250
+
251
+ print(f"Selected features: {features_df.columns.tolist()}")
252
+
253
+ imputer = SimpleImputer(strategy='mean')
254
+ X = imputer.fit_transform(features_df)
255
+ y = df['label'].values
256
+
257
+ print(f"Final data size after NaN processing: {X.shape}")
258
+ print(f"Labels distribution: {pd.Series(y).value_counts().to_dict()}")
259
+
260
+ label_encoder = LabelEncoder()
261
+ y_encoded = label_encoder.fit_transform(y)
262
+
263
+ X_train, X_test, y_train, y_test = train_test_split(
264
+ X, y_encoded, test_size=0.2, random_state=random_state
265
+ )
266
+
267
+ X_train, X_val, y_train, y_val = train_test_split(
268
+ X_train, y_train, test_size=0.2, random_state=random_state
269
+ )
270
+
271
+ scaler = StandardScaler()
272
+ X_train_scaled = scaler.fit_transform(X_train)
273
+ X_val_scaled = scaler.transform(X_val)
274
+ X_test_scaled = scaler.transform(X_test)
275
+
276
+ X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
277
+ y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
278
+ X_val_tensor = torch.FloatTensor(X_val_scaled).to(DEVICE)
279
+ y_val_tensor = torch.LongTensor(y_val).to(DEVICE)
280
+ X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
281
+
282
+ train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
283
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
284
+
285
+ num_classes = len(label_encoder.classes_)
286
+ model = build_neural_network(X_train_scaled.shape[1], num_classes,
287
+ hidden_layers=model_config['hidden_layers'])
288
+
289
+ criterion = nn.CrossEntropyLoss()
290
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
291
+
292
+ num_epochs = 100
293
+ best_loss = float('inf')
294
+ patience = 10
295
+ patience_counter = 0
296
+ best_model_state = None
297
+
298
+ train_losses = []
299
+ val_losses = []
300
+ train_accuracies = []
301
+ val_accuracies = []
302
+
303
+ for epoch in range(num_epochs):
304
+ model.train()
305
+ running_loss = 0.0
306
+ correct_train = 0
307
+ total_train = 0
308
+
309
+ for inputs, labels in train_loader:
310
+ optimizer.zero_grad()
311
+ outputs = model(inputs)
312
+ loss = criterion(outputs, labels)
313
+ loss.backward()
314
+ optimizer.step()
315
+
316
+ running_loss += loss.item() * inputs.size(0)
317
+
318
+ _, predicted = torch.max(outputs.data, 1)
319
+ total_train += labels.size(0)
320
+ correct_train += (predicted == labels).sum().item()
321
+
322
+ epoch_loss = running_loss / len(train_loader.dataset)
323
+ train_losses.append(epoch_loss)
324
+
325
+ train_accuracy = correct_train / total_train
326
+ train_accuracies.append(train_accuracy)
327
+
328
+ model.eval()
329
+ with torch.no_grad():
330
+ val_outputs = model(X_val_tensor)
331
+ val_loss = criterion(val_outputs, y_val_tensor)
332
+ val_losses.append(val_loss.item())
333
+
334
+ _, predicted_val = torch.max(val_outputs.data, 1)
335
+ val_accuracy = (predicted_val == y_val_tensor).sum().item() / len(y_val_tensor)
336
+ val_accuracies.append(val_accuracy)
337
+
338
+ print(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}, Acc: {train_accuracy:.4f}, Val Loss: {val_loss:.4f}, Val Acc: {val_accuracy:.4f}")
339
+
340
+ if val_loss < best_loss:
341
+ best_loss = val_loss
342
+ patience_counter = 0
343
+ best_model_state = model.state_dict().copy()
344
+ else:
345
+ patience_counter += 1
346
+
347
+ if patience_counter >= patience:
348
+ print(f"Early stopping at epoch {epoch+1}")
349
+ break
350
+
351
+ plot_learning_curve(train_losses, val_losses)
352
+ plot_accuracy_curve(train_accuracies, val_accuracies)
353
+
354
+ if best_model_state:
355
+ model.load_state_dict(best_model_state)
356
+
357
+ model.eval()
358
+ with torch.no_grad():
359
+ y_pred_prob = model(X_test_tensor)
360
+ y_pred = torch.argmax(y_pred_prob, dim=1).cpu().numpy()
361
+
362
+ accuracy = accuracy_score(y_test, y_pred)
363
+ print(f"Model accuracy: {accuracy:.6f}")
364
+
365
+ class_names = label_encoder.classes_
366
+ print("\nClassification report:")
367
+ print(classification_report(y_test, y_pred, target_names=class_names))
368
+
369
+ return model, scaler, label_encoder, accuracy
370
+
371
+ def save_model(model, scaler, label_encoder, imputer, output_dir='models/neural_network'):
372
+ if not os.path.exists(output_dir):
373
+ os.makedirs(output_dir)
374
+
375
+ model_path = os.path.join(output_dir, 'nn_model.pt')
376
+ torch.save(model.state_dict(), model_path)
377
+
378
+ scaler_path = os.path.join(output_dir, 'scaler.joblib')
379
+ joblib.dump(scaler, scaler_path)
380
+
381
+ encoder_path = os.path.join(output_dir, 'label_encoder.joblib')
382
+ joblib.dump(label_encoder, encoder_path)
383
+
384
+ imputer_path = os.path.join(output_dir, 'imputer.joblib')
385
+ joblib.dump(imputer, imputer_path)
386
+
387
+ print(f"Model saved to {model_path}")
388
+ print(f"Scaler saved to {scaler_path}")
389
+ print(f"Label encoder saved to {encoder_path}")
390
+ print(f"Imputer saved to {imputer_path}")
391
+
392
+ return model_path, scaler_path, encoder_path, imputer_path
393
+
394
+ def evaluate_statistical_significance(X, y, model_config, scaler, label_encoder, cv=5, random_state=42, cv_epochs=15):
395
+ print("Starting statistical significance evaluation...")
396
+
397
+ skf = StratifiedKFold(n_splits=cv, shuffle=True, random_state=random_state)
398
+ cv_scores = []
399
+ all_y_true = []
400
+ all_y_pred = []
401
+
402
+ class_counts = np.bincount(y)
403
+ baseline_accuracy = np.max(class_counts) / len(y)
404
+ most_frequent_class = np.argmax(class_counts)
405
+
406
+ print(f"Baseline (most frequent class) accuracy: {baseline_accuracy:.4f}")
407
+ print(f"Most frequent class: {label_encoder.inverse_transform([most_frequent_class])[0]}")
408
+
409
+ fold = 1
410
+ for train_idx, test_idx in skf.split(X, y):
411
+ print(f"\nTraining fold {fold}/{cv}...")
412
+
413
+ X_train_fold, X_test_fold = X[train_idx], X[test_idx]
414
+ y_train_fold, y_test_fold = y[train_idx], y[test_idx]
415
+
416
+ X_train_scaled = scaler.transform(X_train_fold)
417
+ X_test_scaled = scaler.transform(X_test_fold)
418
+
419
+ X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
420
+ y_train_tensor = torch.LongTensor(y_train_fold).to(DEVICE)
421
+ X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
422
+
423
+ input_size = X_train_scaled.shape[1]
424
+ num_classes = len(np.unique(y))
425
+ model = build_neural_network(input_size, num_classes, hidden_layers=model_config['hidden_layers'])
426
+
427
+ criterion = nn.CrossEntropyLoss()
428
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
429
+
430
+ train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
431
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
432
+
433
+ model.train()
434
+ for epoch in range(cv_epochs):
435
+ for inputs, labels in train_loader:
436
+ optimizer.zero_grad()
437
+ outputs = model(inputs)
438
+ loss = criterion(outputs, labels)
439
+ loss.backward()
440
+ optimizer.step()
441
+
442
+ model.eval()
443
+ with torch.no_grad():
444
+ outputs = model(X_test_tensor)
445
+ _, predicted = torch.max(outputs.data, 1)
446
+ predicted_np = predicted.cpu().numpy()
447
+
448
+ fold_accuracy = (predicted_np == y_test_fold).mean()
449
+ cv_scores.append(fold_accuracy)
450
+
451
+ all_y_true.extend(y_test_fold)
452
+ all_y_pred.extend(predicted_np)
453
+
454
+ print(f"Fold {fold} accuracy: {fold_accuracy:.4f}")
455
+
456
+ fold += 1
457
+
458
+ cv_scores = np.array(cv_scores)
459
+ mean_accuracy = cv_scores.mean()
460
+ std_accuracy = cv_scores.std()
461
+
462
+ ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(cv)
463
+ ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(cv)
464
+
465
+ t_stat, p_value = stats.ttest_1samp(cv_scores, baseline_accuracy)
466
+
467
+ results = {
468
+ 'cv_scores': [float(score) for score in cv_scores.tolist()],
469
+ 'mean_accuracy': float(mean_accuracy),
470
+ 'std_accuracy': float(std_accuracy),
471
+ 'confidence_interval_95': [float(ci_lower), float(ci_upper)],
472
+ 'baseline_accuracy': float(baseline_accuracy),
473
+ 't_statistic': float(t_stat),
474
+ 'p_value': float(p_value),
475
+ 'statistically_significant': "yes" if p_value < 0.05 else "no"
476
+ }
477
+
478
+ print("\nStatistical Significance Results:")
479
+ print(f"Cross-validation accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
480
+ print(f"95% confidence interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
481
+ print(f"Baseline accuracy (most frequent class): {baseline_accuracy:.4f}")
482
+ print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.6f}")
483
+
484
+ if p_value < 0.05:
485
+ print("The model is significantly better than the baseline (p < 0.05)")
486
+ else:
487
+ print("The model is NOT significantly better than the baseline (p >= 0.05)")
488
+
489
+ class_names = label_encoder.classes_
490
+ cm = pd.crosstab(
491
+ pd.Series(all_y_true, name='Actual'),
492
+ pd.Series(all_y_pred, name='Predicted'),
493
+ normalize='index'
494
+ )
495
+
496
+ cm.index = [class_names[i] for i in range(len(class_names))]
497
+ cm.columns = [class_names[i] for i in range(len(class_names))]
498
+
499
+ plt.figure(figsize=(10, 8))
500
+ sns.heatmap(cm, annot=True, fmt='.2f', cmap='Blues')
501
+ plt.title('Normalized Confusion Matrix (Cross-Validation)')
502
+ plt.ylabel('True Label')
503
+ plt.xlabel('Predicted Label')
504
+
505
+ os.makedirs('plots', exist_ok=True)
506
+ plt.savefig('plots/confusion_matrix_cv.png')
507
+ plt.close()
508
+ print("Confusion matrix saved to plots/confusion_matrix_cv.png")
509
+
510
+ return results
511
+
512
+ def parse_args():
513
+ parser = argparse.ArgumentParser(description='Neural Network Classifier with Statistical Significance Testing')
514
+ parser.add_argument('--random_seed', type=int, default=None,
515
+ help='Random seed for reproducibility. If not provided, a random seed will be generated.')
516
+ parser.add_argument('--multiple_runs', type=int, default=1,
517
+ help='Number of runs with different random seeds')
518
+ return parser.parse_args()
519
+
520
+ def main():
521
+ args = parse_args()
522
+
523
+ if args.random_seed is None:
524
+ seed = int(time.time() * 1000) % 10000
525
+ print(f"Using random seed: {seed}")
526
+ else:
527
+ seed = args.random_seed
528
+ print(f"Using provided seed: {seed}")
529
+
530
+ all_run_results = []
531
+
532
+ for run in range(args.multiple_runs):
533
+ if args.multiple_runs > 1:
534
+ current_seed = seed + run
535
+ print(f"\n\nRun {run+1}/{args.multiple_runs} with seed {current_seed}\n")
536
+ else:
537
+ current_seed = seed
538
+
539
+ np.random.seed(current_seed)
540
+ torch.manual_seed(current_seed)
541
+ if GPU_AVAILABLE:
542
+ torch.cuda.manual_seed_all(current_seed)
543
+ torch.backends.cudnn.deterministic = True
544
+ torch.backends.cudnn.benchmark = False
545
+
546
+ plt.switch_backend('agg')
547
+
548
+ model_config = {
549
+ 'hidden_layers': [128, 96, 64, 32],
550
+ 'dropout_rate': 0.1
551
+ }
552
+
553
+ feature_config = {
554
+ 'basic_scores': True,
555
+ 'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
556
+ 'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
557
+ 'syntactic': ['dependencies', 'noun_chunks'],
558
+ 'entities': ['total_entities', 'entity_types'],
559
+ 'diversity': ['ttr', 'mtld'],
560
+ 'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
561
+ 'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
562
+ 'semantic': True
563
+ }
564
+
565
+ model, scaler, label_encoder, accuracy = train_neural_network(
566
+ directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
567
+ model_config=model_config,
568
+ feature_config=feature_config,
569
+ random_state=current_seed
570
+ )
571
+
572
+ print("\nPerforming statistical significance testing...")
573
+ df = load_data_from_json("experiments/results/two_scores_with_long_text_analyze_2048T")
574
+ features_df = select_features(df, feature_config)
575
+
576
+ imputer = SimpleImputer(strategy='mean')
577
+ X = imputer.fit_transform(features_df)
578
+ y = df['label'].values
579
+ y_encoded = label_encoder.transform(y)
580
+
581
+ significance_results = evaluate_statistical_significance(
582
+ X, y_encoded, model_config, scaler, label_encoder, cv=5, random_state=current_seed
583
+ )
584
+
585
+ run_info = {
586
+ 'run_id': run + 1,
587
+ 'seed': current_seed,
588
+ 'accuracy': float(accuracy),
589
+ 'statistical_significance': significance_results
590
+ }
591
+ all_run_results.append(run_info)
592
+
593
+ output_dir = f'models/neural_network/run_{run+1}_seed_{current_seed}'
594
+ os.makedirs(output_dir, exist_ok=True)
595
+
596
+ with open(f'{output_dir}/statistical_results.json', 'w') as f:
597
+ json.dump(significance_results, f, indent=4)
598
+
599
+ save_model(model, scaler, label_encoder, imputer, output_dir='models/neural_network')
600
+
601
+ if args.multiple_runs > 1:
602
+ accuracy_values = [run['accuracy'] for run in all_run_results]
603
+ mean_accuracy = np.mean(accuracy_values)
604
+ std_accuracy = np.std(accuracy_values)
605
+
606
+ print("\n" + "="*60)
607
+ print(f"SUMMARY OF {args.multiple_runs} RUNS")
608
+ print("="*60)
609
+ print(f"Mean accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
610
+ print(f"Min accuracy: {min(accuracy_values):.4f}, Max accuracy: {max(accuracy_values):.4f}")
611
+
612
+ summary = {
613
+ 'num_runs': args.multiple_runs,
614
+ 'base_seed': seed,
615
+ 'accuracy_mean': float(mean_accuracy),
616
+ 'accuracy_std': float(std_accuracy),
617
+ 'accuracy_min': float(min(accuracy_values)),
618
+ 'accuracy_max': float(max(accuracy_values)),
619
+ 'all_runs': all_run_results
620
+ }
621
+
622
+ with open('models/neural_network/multiple_runs_summary.json', 'w') as f:
623
+ json.dump(summary, f, indent=4)
624
+ print("Summary saved to models/neural_network/multiple_runs_summary.json")
625
+
626
+ if __name__ == "__main__":
627
+ main()
models/neural_network/imputer.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188d4008a04267264ab8575a77248bc14c9918ead0e586b549fb4844cb306039
3
+ size 1975
models/neural_network/label_encoder.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4df61318f184976384ce86efad867496f329e47f12723440beadd5e5649a7f3
3
+ size 563
models/neural_network/nn_model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aeb4b7a9081b2efcd63fc50f07325d00fd20aa3ab776e0398b7bf8263ae9f95
3
+ size 109126
models/neural_network/scaler.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:827e410b2b95d876fde7a040998dd3a2415a1fec96962c284a93473aeaba192b
3
+ size 1623