Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- binoculars/detector.py +40 -14
- binoculars_utils.py +84 -22
- demo/binary_classifier_demo.py +244 -219
binoculars/detector.py
CHANGED
@@ -20,8 +20,11 @@ huggingface_config = {
|
|
20 |
BINOCULARS_ACCURACY_THRESHOLD = 0.9015310749276843 # optimized for f1-score
|
21 |
BINOCULARS_FPR_THRESHOLD = 0.8536432310785527 # optimized for low-fpr [chosen at 0.01%]
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
class Binoculars(object):
|
@@ -35,20 +38,36 @@ class Binoculars(object):
|
|
35 |
assert_tokenizer_consistency(observer_name_or_path, performer_name_or_path)
|
36 |
|
37 |
self.change_mode(mode)
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
self.observer_model = AutoModelForCausalLM.from_pretrained(observer_name_or_path,
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
trust_remote_code=True,
|
41 |
torch_dtype=torch.bfloat16 if use_bfloat16
|
42 |
else torch.float32,
|
43 |
token=huggingface_config["TOKEN"]
|
44 |
)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
else torch.float32,
|
50 |
-
token=huggingface_config["TOKEN"]
|
51 |
-
)
|
52 |
self.observer_model.eval()
|
53 |
self.performer_model.eval()
|
54 |
|
@@ -66,8 +85,13 @@ class Binoculars(object):
|
|
66 |
raise ValueError(f"Invalid mode: {mode}")
|
67 |
|
68 |
def free_memory(self) -> None:
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
if torch.cuda.is_available():
|
73 |
torch.cuda.empty_cache()
|
@@ -91,6 +115,7 @@ class Binoculars(object):
|
|
91 |
|
92 |
@torch.inference_mode()
|
93 |
def _get_logits(self, encodings: transformers.BatchEncoding) -> torch.Tensor:
|
|
|
94 |
observer_logits = self.observer_model(**encodings.to(DEVICE_1)).logits
|
95 |
performer_logits = self.performer_model(**encodings.to(DEVICE_2)).logits
|
96 |
if DEVICE_1 != "cpu":
|
@@ -102,8 +127,9 @@ class Binoculars(object):
|
|
102 |
encodings = self._tokenize(batch)
|
103 |
observer_logits, performer_logits = self._get_logits(encodings)
|
104 |
ppl = perplexity(encodings, performer_logits)
|
105 |
-
|
106 |
-
|
|
|
107 |
binoculars_scores = ppl / x_ppl
|
108 |
binoculars_scores = binoculars_scores.tolist()
|
109 |
return binoculars_scores[0] if isinstance(input_text, str) else binoculars_scores
|
|
|
20 |
BINOCULARS_ACCURACY_THRESHOLD = 0.9015310749276843 # optimized for f1-score
|
21 |
BINOCULARS_FPR_THRESHOLD = 0.8536432310785527 # optimized for low-fpr [chosen at 0.01%]
|
22 |
|
23 |
+
# More efficient device handling for Spaces (likely single GPU)
|
24 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
+
# Use same device for both models in single-GPU environment
|
26 |
+
DEVICE_1 = DEVICE
|
27 |
+
DEVICE_2 = DEVICE
|
28 |
|
29 |
|
30 |
class Binoculars(object):
|
|
|
38 |
assert_tokenizer_consistency(observer_name_or_path, performer_name_or_path)
|
39 |
|
40 |
self.change_mode(mode)
|
41 |
+
|
42 |
+
# Log memory usage before loading models
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
print(f"Before loading observer model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
45 |
+
|
46 |
+
# Load first model
|
47 |
self.observer_model = AutoModelForCausalLM.from_pretrained(observer_name_or_path,
|
48 |
+
device_map={"": DEVICE_1},
|
49 |
+
trust_remote_code=True,
|
50 |
+
torch_dtype=torch.bfloat16 if use_bfloat16
|
51 |
+
else torch.float32,
|
52 |
+
token=huggingface_config["TOKEN"]
|
53 |
+
)
|
54 |
+
# Clear cache between model loads
|
55 |
+
if torch.cuda.is_available():
|
56 |
+
torch.cuda.empty_cache()
|
57 |
+
print(f"After loading observer model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
58 |
+
|
59 |
+
# Load second model
|
60 |
+
self.performer_model = AutoModelForCausalLM.from_pretrained(performer_name_or_path,
|
61 |
+
device_map={"": DEVICE_2},
|
62 |
trust_remote_code=True,
|
63 |
torch_dtype=torch.bfloat16 if use_bfloat16
|
64 |
else torch.float32,
|
65 |
token=huggingface_config["TOKEN"]
|
66 |
)
|
67 |
+
|
68 |
+
if torch.cuda.is_available():
|
69 |
+
print(f"After loading performer model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
70 |
+
|
|
|
|
|
|
|
71 |
self.observer_model.eval()
|
72 |
self.performer_model.eval()
|
73 |
|
|
|
85 |
raise ValueError(f"Invalid mode: {mode}")
|
86 |
|
87 |
def free_memory(self) -> None:
|
88 |
+
"""Explicitly free GPU memory by moving models to CPU and deleting them"""
|
89 |
+
print("Freeing model memory...")
|
90 |
+
if hasattr(self, 'observer_model') and self.observer_model is not None:
|
91 |
+
self.observer_model = self.observer_model.to('cpu')
|
92 |
+
|
93 |
+
if hasattr(self, 'performer_model') and self.performer_model is not None:
|
94 |
+
self.performer_model = self.performer_model.to('cpu')
|
95 |
|
96 |
if torch.cuda.is_available():
|
97 |
torch.cuda.empty_cache()
|
|
|
115 |
|
116 |
@torch.inference_mode()
|
117 |
def _get_logits(self, encodings: transformers.BatchEncoding) -> torch.Tensor:
|
118 |
+
# Ensure we're using the same device for both models
|
119 |
observer_logits = self.observer_model(**encodings.to(DEVICE_1)).logits
|
120 |
performer_logits = self.performer_model(**encodings.to(DEVICE_2)).logits
|
121 |
if DEVICE_1 != "cpu":
|
|
|
127 |
encodings = self._tokenize(batch)
|
128 |
observer_logits, performer_logits = self._get_logits(encodings)
|
129 |
ppl = perplexity(encodings, performer_logits)
|
130 |
+
# No need to move tensors again if they're already on the same device
|
131 |
+
x_ppl = entropy(observer_logits, performer_logits,
|
132 |
+
encodings, self.tokenizer.pad_token_id)
|
133 |
binoculars_scores = ppl / x_ppl
|
134 |
binoculars_scores = binoculars_scores.tolist()
|
135 |
return binoculars_scores[0] if isinstance(input_text, str) else binoculars_scores
|
binoculars_utils.py
CHANGED
@@ -1,43 +1,105 @@
|
|
1 |
from binoculars import Binoculars
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
}
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
bino_chat = Binoculars(
|
17 |
mode="accuracy",
|
18 |
-
observer_name_or_path=
|
19 |
-
performer_name_or_path=
|
20 |
max_token_observed=2048
|
21 |
)
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
bino_coder = Binoculars(
|
24 |
mode="accuracy",
|
25 |
-
observer_name_or_path=
|
26 |
-
performer_name_or_path=
|
27 |
max_token_observed=2048
|
28 |
)
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
scores = {}
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if bino_chat:
|
36 |
-
|
37 |
-
scores['score_chat'] = bino_chat.compute_score(text)
|
38 |
|
39 |
if bino_coder:
|
40 |
-
|
41 |
-
scores['score_coder'] = bino_coder.compute_score(text)
|
42 |
-
|
43 |
-
return scores
|
|
|
1 |
from binoculars import Binoculars
|
2 |
+
import torch
|
3 |
+
import gc
|
4 |
|
5 |
+
CHAT_MODEL_PAIR = {
|
6 |
+
"observer": "deepseek-ai/deepseek-llm-7b-base",
|
7 |
+
"performer": "deepseek-ai/deepseek-llm-7b-chat"
|
8 |
+
}
|
|
|
9 |
|
10 |
+
CODER_MODEL_PAIR = {
|
11 |
+
"observer": "deepseek-ai/deepseek-llm-7b-base",
|
12 |
+
"performer": "deepseek-ai/deepseek-coder-7b-instruct-v1.5"
|
13 |
+
}
|
14 |
+
|
15 |
+
def initialize_chat_model():
|
16 |
+
print("Initializing chat Binoculars model...")
|
17 |
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
print(f"GPU Memory before chat model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
21 |
|
22 |
bino_chat = Binoculars(
|
23 |
mode="accuracy",
|
24 |
+
observer_name_or_path=CHAT_MODEL_PAIR["observer"],
|
25 |
+
performer_name_or_path=CHAT_MODEL_PAIR["performer"],
|
26 |
max_token_observed=2048
|
27 |
)
|
28 |
+
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
print(f"GPU Memory after chat model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
31 |
+
|
32 |
+
return bino_chat
|
33 |
|
34 |
+
def initialize_coder_model():
|
35 |
+
print("Initializing coder Binoculars model...")
|
36 |
+
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
torch.cuda.empty_cache()
|
39 |
+
print(f"GPU Memory before coder model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
40 |
+
|
41 |
bino_coder = Binoculars(
|
42 |
mode="accuracy",
|
43 |
+
observer_name_or_path=CODER_MODEL_PAIR["observer"],
|
44 |
+
performer_name_or_path=CODER_MODEL_PAIR["performer"],
|
45 |
max_token_observed=2048
|
46 |
)
|
47 |
|
48 |
+
if torch.cuda.is_available():
|
49 |
+
print(f"GPU Memory after coder model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
50 |
+
|
51 |
+
return bino_coder
|
52 |
+
|
53 |
+
def compute_chat_score(text):
|
54 |
+
print("Computing chat score...")
|
55 |
+
bino_chat = initialize_chat_model()
|
56 |
+
|
57 |
+
try:
|
58 |
+
score_chat = bino_chat.compute_score(text)
|
59 |
+
return {"score_chat": score_chat}
|
60 |
+
finally:
|
61 |
+
cleanup_model(bino_chat)
|
62 |
|
63 |
+
def compute_coder_score(text):
|
64 |
+
print("Computing coder score...")
|
65 |
+
bino_coder = initialize_coder_model()
|
66 |
+
|
67 |
+
try:
|
68 |
+
score_coder = bino_coder.compute_score(text)
|
69 |
+
return {"score_coder": score_coder}
|
70 |
+
finally:
|
71 |
+
cleanup_model(bino_coder)
|
72 |
+
|
73 |
+
def compute_scores(text, use_chat=True, use_coder=True):
|
74 |
scores = {}
|
75 |
|
76 |
+
if use_chat:
|
77 |
+
chat_scores = compute_chat_score(text)
|
78 |
+
scores.update(chat_scores)
|
79 |
+
|
80 |
+
if use_coder:
|
81 |
+
coder_scores = compute_coder_score(text)
|
82 |
+
scores.update(coder_scores)
|
83 |
+
|
84 |
+
return scores
|
85 |
+
|
86 |
+
def cleanup_model(model):
|
87 |
+
if model:
|
88 |
+
try:
|
89 |
+
print(f"Cleaning up model resources...")
|
90 |
+
model.free_memory()
|
91 |
+
|
92 |
+
gc.collect()
|
93 |
+
if torch.cuda.is_available():
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
torch.cuda.synchronize()
|
96 |
+
print(f"After cleanup: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error during model cleanup: {str(e)}")
|
99 |
+
|
100 |
+
def cleanup_models(bino_chat, bino_coder):
|
101 |
if bino_chat:
|
102 |
+
cleanup_model(bino_chat)
|
|
|
103 |
|
104 |
if bino_coder:
|
105 |
+
cleanup_model(bino_coder)
|
|
|
|
|
|
demo/binary_classifier_demo.py
CHANGED
@@ -4,9 +4,10 @@ import gradio as gr
|
|
4 |
import torch
|
5 |
import os
|
6 |
import spaces
|
|
|
7 |
|
8 |
from model_utils import load_model, classify_text
|
9 |
-
from binoculars_utils import
|
10 |
|
11 |
MINIMUM_TOKENS = 200
|
12 |
|
@@ -46,42 +47,48 @@ css = """
|
|
46 |
|
47 |
@spaces.GPU
|
48 |
def run_binary_classifier(text, show_analysis=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
if len(text.strip()) < MINIMUM_TOKENS:
|
50 |
return gr.Markdown(f"Текст слишком короткий. Требуется минимум {MINIMUM_TOKENS} символов."), None, None
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# Load binary classifier model
|
56 |
-
model, scaler, label_encoder, imputer = load_model()
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
## Результат классификации
|
86 |
|
87 |
Предсказанный класс: <span class="{class_style}">{predicted_class}</span>
|
@@ -91,199 +98,217 @@ def run_binary_classifier(text, show_analysis=False):
|
|
91 |
|
92 |
{scores_str}
|
93 |
"""
|
94 |
-
|
95 |
-
# Analysis markdown
|
96 |
-
analysis_md = None
|
97 |
-
if show_analysis:
|
98 |
-
features = result['features']
|
99 |
-
text_analysis = result['text_analysis']
|
100 |
-
|
101 |
-
basic_stats_dict = {
|
102 |
-
'total_tokens': 'Количество токенов',
|
103 |
-
'total_words': 'Количество слов',
|
104 |
-
'unique_words': 'Количество уникальных слов',
|
105 |
-
'stop_words': 'Количество стоп-слов',
|
106 |
-
'avg_word_length': 'Средняя длина слова (символов)'
|
107 |
-
}
|
108 |
-
|
109 |
-
morph_dict = {
|
110 |
-
'pos_distribution': 'Распределение частей речи',
|
111 |
-
'unique_lemmas': 'Количество уникальных лемм',
|
112 |
-
'lemma_word_ratio': 'Отношение лемм к словам'
|
113 |
-
}
|
114 |
-
|
115 |
-
synt_dict = {
|
116 |
-
'dependencies': 'Зависимости между словами',
|
117 |
-
'noun_chunks': 'Количество именных групп'
|
118 |
-
}
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
elif pos == 'PUNCT': pos_name = 'Знаки препинания'
|
182 |
-
elif pos == 'AUX': pos_name = 'Вспомогательные глаголы'
|
183 |
-
elif pos == 'SYM': pos_name = 'Символы'
|
184 |
-
elif pos == 'INTJ': pos_name = 'Междометия'
|
185 |
-
elif pos == 'X': pos_name = 'Другое (X)'
|
186 |
-
analysis_md += f" - {pos_name}: {count}\n"
|
187 |
-
elif isinstance(value, float):
|
188 |
-
analysis_md += f"- {label}: {value:.3f}\n"
|
189 |
-
else:
|
190 |
-
analysis_md += f"- {label}: {value}\n"
|
191 |
-
analysis_md += "\n"
|
192 |
-
|
193 |
-
# Syntactic analysis
|
194 |
-
analysis_md += "### Синтаксический анализ\n"
|
195 |
-
synt_analysis = text_analysis.get('syntactic_analysis', {})
|
196 |
-
for key, value in synt_analysis.items():
|
197 |
-
label = synt_dict.get(key, key)
|
198 |
-
if key == 'dependencies':
|
199 |
-
analysis_md += f"- {label}:\n"
|
200 |
-
for dep, count in value.items():
|
201 |
-
dep_name = dep
|
202 |
-
if dep == 'nsubj': dep_name = 'Подлежащие'
|
203 |
-
elif dep == 'obj': dep_name = 'Дополнения'
|
204 |
-
elif dep == 'amod': dep_name = 'Определения'
|
205 |
-
elif dep == 'nmod': dep_name = 'Именные модификаторы'
|
206 |
-
elif dep == 'ROOT': dep_name = 'Корневые узлы'
|
207 |
-
elif dep == 'punct': dep_name = 'Пунктуация'
|
208 |
-
elif dep == 'case': dep_name = 'Падежные маркеры'
|
209 |
-
elif dep == 'dep': dep_name = 'Общие зависимости'
|
210 |
-
elif dep == 'appos': dep_name = 'Приложения'
|
211 |
-
elif dep == 'flat:foreign': dep_name = 'Иностранные выражения'
|
212 |
-
elif dep == 'conj': dep_name = 'Сочинитель��ые конструкции'
|
213 |
-
elif dep == 'obl': dep_name = 'Косвенные дополнения'
|
214 |
-
analysis_md += f" - {dep_name}: {count}\n"
|
215 |
-
elif key == 'noun_chunks':
|
216 |
-
if isinstance(value, bool):
|
217 |
-
analysis_md += f"- {label}: {0 if value is False else value}\n"
|
218 |
else:
|
219 |
analysis_md += f"- {label}: {value}\n"
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
-
#
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
analysis_md += f"- {label}: {value:.2f}\n"
|
271 |
-
else:
|
272 |
-
analysis_md += f"- {label}: {value}\n"
|
273 |
-
analysis_md += "\n"
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
analysis_md += f"- {label}: {value:.3f}\n"
|
281 |
-
else:
|
282 |
-
analysis_md += f"- {label}: {value}\n"
|
283 |
-
|
284 |
-
return gr.Markdown(result_md), gr.Markdown(analysis_md) if analysis_md else None, text
|
285 |
|
286 |
def reset_outputs():
|
|
|
|
|
|
|
|
|
287 |
return None, None, ""
|
288 |
|
289 |
with gr.Blocks(css=css, theme=gr.themes.Base()) as binary_app:
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
import spaces
|
7 |
+
import gc
|
8 |
|
9 |
from model_utils import load_model, classify_text
|
10 |
+
from binoculars_utils import compute_scores, cleanup_model, cleanup_models
|
11 |
|
12 |
MINIMUM_TOKENS = 200
|
13 |
|
|
|
47 |
|
48 |
@spaces.GPU
|
49 |
def run_binary_classifier(text, show_analysis=False):
|
50 |
+
# Check GPU status at the beginning
|
51 |
+
if torch.cuda.is_available():
|
52 |
+
print(f"Starting classification with GPU: {torch.cuda.get_device_name(0)}")
|
53 |
+
print(f"Initial GPU memory: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
54 |
+
torch.cuda.empty_cache()
|
55 |
+
else:
|
56 |
+
print("No GPU available, running on CPU")
|
57 |
+
|
58 |
if len(text.strip()) < MINIMUM_TOKENS:
|
59 |
return gr.Markdown(f"Текст слишком короткий. Требуется минимум {MINIMUM_TOKENS} символов."), None, None
|
60 |
|
61 |
+
try:
|
62 |
+
# Load binary classifier model
|
63 |
+
model, scaler, label_encoder, imputer = load_model()
|
|
|
|
|
64 |
|
65 |
+
# Compute scores последовательно
|
66 |
+
scores = compute_scores(text, use_chat=True, use_coder=True)
|
67 |
+
|
68 |
+
# Run classification
|
69 |
+
result = classify_text(text, model, scaler, label_encoder, imputer=imputer, scores=scores)
|
70 |
+
|
71 |
+
# Format results
|
72 |
+
predicted_class = result['predicted_class']
|
73 |
+
probabilities = result['probabilities']
|
74 |
+
|
75 |
+
# Format probabilities
|
76 |
+
prob_str = ""
|
77 |
+
for cls, prob in probabilities.items():
|
78 |
+
prob_str += f"- {cls}: {prob:.4f}\n"
|
79 |
+
|
80 |
+
# Format scores
|
81 |
+
scores_str = ""
|
82 |
+
if scores:
|
83 |
+
scores_str = "### Binoculars Scores\n"
|
84 |
+
if 'score_chat' in scores:
|
85 |
+
scores_str += f"- Score Chat: {scores['score_chat']:.4f}\n"
|
86 |
+
if 'score_coder' in scores:
|
87 |
+
scores_str += f"- Score Coder: {scores['score_coder']:.4f}\n"
|
88 |
+
|
89 |
+
# Result markdown
|
90 |
+
class_style = "human-text" if predicted_class == "Human" else "ai-text"
|
91 |
+
result_md = f"""
|
92 |
## Результат классификации
|
93 |
|
94 |
Предсказанный класс: <span class="{class_style}">{predicted_class}</span>
|
|
|
98 |
|
99 |
{scores_str}
|
100 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
# Analysis markdown
|
103 |
+
analysis_md = None
|
104 |
+
if show_analysis:
|
105 |
+
features = result['features']
|
106 |
+
text_analysis = result['text_analysis']
|
107 |
+
|
108 |
+
basic_stats_dict = {
|
109 |
+
'total_tokens': 'Количество токенов',
|
110 |
+
'total_words': 'Количество слов',
|
111 |
+
'unique_words': 'Количество уникальных слов',
|
112 |
+
'stop_words': 'Количество стоп-слов',
|
113 |
+
'avg_word_length': 'Средняя длина слова (символов)'
|
114 |
+
}
|
115 |
+
|
116 |
+
morph_dict = {
|
117 |
+
'pos_distribution': 'Распределение частей речи',
|
118 |
+
'unique_lemmas': 'Количество уникальных лемм',
|
119 |
+
'lemma_word_ratio': 'Отношение лемм к словам'
|
120 |
+
}
|
121 |
+
|
122 |
+
synt_dict = {
|
123 |
+
'dependencies': 'Зависимости между словами',
|
124 |
+
'noun_chunks': 'Количество именных групп'
|
125 |
+
}
|
126 |
+
|
127 |
+
entities_dict = {
|
128 |
+
'total_entities': 'Общее количество именованных сущностей',
|
129 |
+
'entity_types': 'Типы именованных сущностей'
|
130 |
+
}
|
131 |
+
|
132 |
+
diversity_dict = {
|
133 |
+
'ttr': 'TTR (отношение типов к токенам)',
|
134 |
+
'mtld': 'MTLD (мера лексического разнообразия)'
|
135 |
+
}
|
136 |
+
|
137 |
+
structure_dict = {
|
138 |
+
'sentence_count': 'Количество предложений',
|
139 |
+
'avg_sentence_length': 'Средняя длина предложения (токенов)',
|
140 |
+
'question_sentences': 'Количество вопросительных предложений',
|
141 |
+
'exclamation_sentences': 'Количество восклицательных предложений'
|
142 |
+
}
|
143 |
+
|
144 |
+
readability_dict = {
|
145 |
+
'words_per_sentence': 'Слов на предложение',
|
146 |
+
'syllables_per_word': 'Слогов на слово',
|
147 |
+
'flesh_kincaid_score': 'Индекс читабельности Флеша-Кинкейда',
|
148 |
+
'long_words_percent': 'Процент длинных слов'
|
149 |
+
}
|
150 |
+
|
151 |
+
semantic_dict = {
|
152 |
+
'avg_coherence_score': 'Средняя связность между предложениями'
|
153 |
+
}
|
154 |
+
|
155 |
+
analysis_md = "## Анализ текста\n\n"
|
156 |
+
|
157 |
+
# Basic statistics
|
158 |
+
analysis_md += "### Основная статистика\n"
|
159 |
+
for key, value in text_analysis.get('basic_stats', {}).items():
|
160 |
+
label = basic_stats_dict.get(key, key)
|
161 |
+
if isinstance(value, float):
|
162 |
+
analysis_md += f"- {label}: {value:.2f}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
analysis_md += f"- {label}: {value}\n"
|
165 |
+
analysis_md += "\n"
|
166 |
+
|
167 |
+
# Morphological analysis
|
168 |
+
analysis_md += "### Морфологический анализ\n"
|
169 |
+
morph_analysis = text_analysis.get('morphological_analysis', {})
|
170 |
+
for key, value in morph_analysis.items():
|
171 |
+
label = morph_dict.get(key, key)
|
172 |
+
if key == 'pos_distribution':
|
173 |
+
analysis_md += f"- {label}:\n"
|
174 |
+
for pos, count in value.items():
|
175 |
+
pos_name = pos
|
176 |
+
if pos == 'NOUN': pos_name = 'Существительные'
|
177 |
+
elif pos == 'VERB': pos_name = 'Глаголы'
|
178 |
+
elif pos == 'ADJ': pos_name = 'Прилагательные'
|
179 |
+
elif pos == 'ADV': pos_name = 'Наречия'
|
180 |
+
elif pos == 'PROPN': pos_name = 'Имена собственные'
|
181 |
+
elif pos == 'DET': pos_name = 'Определители'
|
182 |
+
elif pos == 'ADP': pos_name = 'Предлоги'
|
183 |
+
elif pos == 'PRON': pos_name = 'Местоимения'
|
184 |
+
elif pos == 'CCONJ': pos_name = 'Сочинительные союзы'
|
185 |
+
elif pos == 'SCONJ': pos_name = 'Подчинительные союзы'
|
186 |
+
elif pos == 'NUM': pos_name = 'Числительные'
|
187 |
+
elif pos == 'PART': pos_name = 'Частицы'
|
188 |
+
elif pos == 'PUNCT': pos_name = 'Знаки препинания'
|
189 |
+
elif pos == 'AUX': pos_name = 'Вспомогательные глаголы'
|
190 |
+
elif pos == 'SYM': pos_name = 'Символы'
|
191 |
+
elif pos == 'INTJ': pos_name = 'Междометия'
|
192 |
+
elif pos == 'X': pos_name = 'Другое (X)'
|
193 |
+
analysis_md += f" - {pos_name}: {count}\n"
|
194 |
+
elif isinstance(value, float):
|
195 |
+
analysis_md += f"- {label}: {value:.3f}\n"
|
196 |
+
else:
|
197 |
+
analysis_md += f"- {label}: {value}\n"
|
198 |
+
analysis_md += "\n"
|
199 |
+
|
200 |
+
# Syntactic analysis
|
201 |
+
analysis_md += "### Синтаксический анализ\n"
|
202 |
+
synt_analysis = text_analysis.get('syntactic_analysis', {})
|
203 |
+
for key, value in synt_analysis.items():
|
204 |
+
label = synt_dict.get(key, key)
|
205 |
+
if key == 'dependencies':
|
206 |
+
analysis_md += f"- {label}:\n"
|
207 |
+
for dep, count in value.items():
|
208 |
+
dep_name = dep
|
209 |
+
if dep == 'nsubj': dep_name = 'Подлежащие'
|
210 |
+
elif dep == 'obj': dep_name = 'Дополнения'
|
211 |
+
elif dep == 'amod': dep_name = 'Определения'
|
212 |
+
elif dep == 'nmod': dep_name = 'Именные модификаторы'
|
213 |
+
elif dep == 'ROOT': dep_name = 'Корневые узлы'
|
214 |
+
elif dep == 'punct': dep_name = 'Пунктуация'
|
215 |
+
elif dep == 'case': dep_name = 'Падежные маркеры'
|
216 |
+
elif dep == 'dep': dep_name = 'Общие зависимости'
|
217 |
+
elif dep == 'appos': dep_name = 'Приложения'
|
218 |
+
elif dep == 'flat:foreign': dep_name = 'Иностранные выражения'
|
219 |
+
elif dep == 'conj': dep_name = 'Сочинительные конструкции'
|
220 |
+
elif dep == 'obl': dep_name = 'Косвенные дополнения'
|
221 |
+
analysis_md += f" - {dep_name}: {count}\n"
|
222 |
+
elif key == 'noun_chunks':
|
223 |
+
if isinstance(value, bool):
|
224 |
+
analysis_md += f"- {label}: {0 if value is False else value}\n"
|
225 |
+
else:
|
226 |
+
analysis_md += f"- {label}: {value}\n"
|
227 |
+
elif isinstance(value, float):
|
228 |
+
analysis_md += f"- {label}: {value:.3f}\n"
|
229 |
+
else:
|
230 |
+
analysis_md += f"- {label}: {value}\n"
|
231 |
+
analysis_md += "\n"
|
232 |
+
|
233 |
+
# Named entities
|
234 |
+
analysis_md += "### Именованные сущности\n"
|
235 |
+
entities = text_analysis.get('named_entities', {})
|
236 |
+
for key, value in entities.items():
|
237 |
+
label = entities_dict.get(key, key)
|
238 |
+
if key == 'entity_types':
|
239 |
+
analysis_md += f"- {label}:\n"
|
240 |
+
for ent, count in value.items():
|
241 |
+
ent_name = ent
|
242 |
+
if ent == 'PER': ent_name = 'Люди'
|
243 |
+
elif ent == 'LOC': ent_name = 'Локации'
|
244 |
+
elif ent == 'ORG': ent_name = 'Организации'
|
245 |
+
analysis_md += f" - {ent_name}: {count}\n"
|
246 |
+
elif isinstance(value, float):
|
247 |
+
analysis_md += f"- {label}: {value:.3f}\n"
|
248 |
+
else:
|
249 |
+
analysis_md += f"- {label}: {value}\n"
|
250 |
+
analysis_md += "\n"
|
251 |
+
|
252 |
+
# Lexical diversity
|
253 |
+
analysis_md += "### Лексическое разнообразие\n"
|
254 |
+
for key, value in text_analysis.get('lexical_diversity', {}).items():
|
255 |
+
label = diversity_dict.get(key, key)
|
256 |
+
if isinstance(value, float):
|
257 |
+
analysis_md += f"- {label}: {value:.3f}\n"
|
258 |
+
else:
|
259 |
+
analysis_md += f"- {label}: {value}\n"
|
260 |
+
analysis_md += "\n"
|
261 |
+
|
262 |
+
# Text structure
|
263 |
+
analysis_md += "### Структура текста\n"
|
264 |
+
for key, value in text_analysis.get('text_structure', {}).items():
|
265 |
+
label = structure_dict.get(key, key)
|
266 |
+
if isinstance(value, float):
|
267 |
+
analysis_md += f"- {label}: {value:.2f}\n"
|
268 |
+
else:
|
269 |
+
analysis_md += f"- {label}: {value}\n"
|
270 |
+
analysis_md += "\n"
|
271 |
+
|
272 |
+
# Readability
|
273 |
+
analysis_md += "### Читабельность\n"
|
274 |
+
for key, value in text_analysis.get('readability', {}).items():
|
275 |
+
label = readability_dict.get(key, key)
|
276 |
+
if isinstance(value, float):
|
277 |
+
analysis_md += f"- {label}: {value:.2f}\n"
|
278 |
+
else:
|
279 |
+
analysis_md += f"- {label}: {value}\n"
|
280 |
+
analysis_md += "\n"
|
281 |
+
|
282 |
+
# Semantic coherence
|
283 |
+
analysis_md += "### Семантическая связность\n"
|
284 |
+
for key, value in text_analysis.get('semantic_coherence', {}).items():
|
285 |
+
label = semantic_dict.get(key, key)
|
286 |
+
if isinstance(value, float):
|
287 |
+
analysis_md += f"- {label}: {value:.3f}\n"
|
288 |
+
else:
|
289 |
+
analysis_md += f"- {label}: {value}\n"
|
290 |
+
|
291 |
+
# Return results
|
292 |
+
result_output = gr.Markdown(result_md)
|
293 |
+
analysis_output = gr.Markdown(analysis_md) if analysis_md else None
|
294 |
|
295 |
+
# Report final GPU memory status
|
296 |
+
if torch.cuda.is_available():
|
297 |
+
print(f"Final GPU memory: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated")
|
298 |
+
|
299 |
+
return result_output, analysis_output, text
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
except Exception as e:
|
302 |
+
# Выводим ошибку в случае проблем
|
303 |
+
error_msg = f"Ошибка при классификации: {str(e)}"
|
304 |
+
print(error_msg)
|
305 |
+
return gr.Markdown(error_msg), None, text
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
def reset_outputs():
|
308 |
+
# Force memory cleanup when resetting
|
309 |
+
if torch.cuda.is_available():
|
310 |
+
torch.cuda.empty_cache()
|
311 |
+
|
312 |
return None, None, ""
|
313 |
|
314 |
with gr.Blocks(css=css, theme=gr.themes.Base()) as binary_app:
|