from typing import Union import os import numpy as np import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from .utils import assert_tokenizer_consistency from .metrics import perplexity, entropy torch.set_grad_enabled(False) huggingface_config = { # Only required for private models from Huggingface (e.g. LLaMA models) "TOKEN": os.environ.get("HF_TOKEN", None) } # selected using Falcon-7B and Falcon-7B-Instruct at bfloat16 BINOCULARS_ACCURACY_THRESHOLD = 0.9015310749276843 # optimized for f1-score BINOCULARS_FPR_THRESHOLD = 0.8536432310785527 # optimized for low-fpr [chosen at 0.01%] # More efficient device handling for Spaces (likely single GPU) DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" # Use same device for both models in single-GPU environment DEVICE_1 = DEVICE DEVICE_2 = DEVICE class Binoculars(object): def __init__(self, observer_name_or_path: str = "tiiuae/falcon-7b", performer_name_or_path: str = "tiiuae/falcon-7b-instruct", use_bfloat16: bool = True, max_token_observed: int = 512, mode: str = "low-fpr", ) -> None: assert_tokenizer_consistency(observer_name_or_path, performer_name_or_path) self.change_mode(mode) # Log memory usage before loading models if torch.cuda.is_available(): print(f"Before loading observer model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated") # Load first model self.observer_model = AutoModelForCausalLM.from_pretrained(observer_name_or_path, device_map={"": DEVICE_1}, trust_remote_code=True, torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32, token=huggingface_config["TOKEN"] ) # Clear cache between model loads if torch.cuda.is_available(): torch.cuda.empty_cache() print(f"After loading observer model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated") # Load second model self.performer_model = AutoModelForCausalLM.from_pretrained(performer_name_or_path, device_map={"": DEVICE_2}, trust_remote_code=True, torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32, token=huggingface_config["TOKEN"] ) if torch.cuda.is_available(): print(f"After loading performer model: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB allocated") self.observer_model.eval() self.performer_model.eval() self.tokenizer = AutoTokenizer.from_pretrained(observer_name_or_path) if not self.tokenizer.pad_token: self.tokenizer.pad_token = self.tokenizer.eos_token self.max_token_observed = max_token_observed def change_mode(self, mode: str) -> None: if mode == "low-fpr": self.threshold = BINOCULARS_FPR_THRESHOLD elif mode == "accuracy": self.threshold = BINOCULARS_ACCURACY_THRESHOLD else: raise ValueError(f"Invalid mode: {mode}") def free_memory(self) -> None: if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.synchronize() del self.observer_model del self.performer_model self.observer_model = None self.performer_model = None def _tokenize(self, batch: list[str]) -> transformers.BatchEncoding: batch_size = len(batch) encodings = self.tokenizer( batch, return_tensors="pt", padding="longest" if batch_size > 1 else False, truncation=True, max_length=self.max_token_observed, return_token_type_ids=False).to(self.observer_model.device) return encodings @torch.inference_mode() def _get_logits(self, encodings: transformers.BatchEncoding) -> torch.Tensor: # Ensure we're using the same device for both models observer_logits = self.observer_model(**encodings.to(DEVICE_1)).logits performer_logits = self.performer_model(**encodings.to(DEVICE_2)).logits if DEVICE_1 != "cpu": torch.cuda.synchronize() return observer_logits, performer_logits def compute_score(self, input_text: Union[list[str], str]) -> Union[float, list[float]]: batch = [input_text] if isinstance(input_text, str) else input_text encodings = self._tokenize(batch) observer_logits, performer_logits = self._get_logits(encodings) ppl = perplexity(encodings, performer_logits) # No need to move tensors again if they're already on the same device x_ppl = entropy(observer_logits, performer_logits, encodings, self.tokenizer.pad_token_id) binoculars_scores = ppl / x_ppl binoculars_scores = binoculars_scores.tolist() return binoculars_scores[0] if isinstance(input_text, str) else binoculars_scores def predict(self, input_text: Union[list[str], str]) -> Union[list[str], str]: binoculars_scores = np.array(self.compute_score(input_text)) pred = np.where(binoculars_scores < self.threshold, "Most likely AI-generated", "Most likely human-generated" ).tolist() return pred