DDCM-Compressed-Image-Generation / DDCM_blind_face_image_restoration.py
DDCM's picture
initial commit
b273838
import os
from functools import partial
import cv2
import gradio as gr
import spaces
from util.file import generate_binary_file, load_numpy_from_binary_bitwise
import torch
import yaml
from util.basicsr_img_util import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import resize
from guided_diffusion.gaussian_diffusion import create_sampler
from guided_diffusion.swinir import SwinIR
from guided_diffusion.unet import create_model
def create_swinir_model(ckpt_path):
cfg = {
'in_channels': 3,
'out_channels': 3,
'embed_dim': 180,
'depths': [6, 6, 6, 6, 6, 6, 6, 6],
'num_heads': [6, 6, 6, 6, 6, 6, 6, 6],
'resi_connection': '1conv',
'sf': 8
}
mmse_model = SwinIR(
img_size=64,
patch_size=1,
in_chans=cfg['in_channels'],
num_out_ch=cfg['out_channels'],
embed_dim=cfg['embed_dim'],
depths=cfg['depths'],
num_heads=cfg['num_heads'],
window_size=8,
mlp_ratio=2,
sf=cfg['sf'],
img_range=1.0,
upsampler="nearest+conv",
resi_connection=cfg['resi_connection'],
unshuffle=True,
unshuffle_scale=8
)
ckpt = torch.load(ckpt_path, map_location="cpu")
if 'params_ema' in ckpt:
mmse_model.load_state_dict(ckpt['params_ema'])
else:
state_dict = ckpt['state_dict']
state_dict = {layer_name.replace('model.', ''): weights for layer_name, weights in
state_dict.items()}
state_dict = {layer_name.replace('module.', ''): weights for layer_name, weights in
state_dict.items()}
mmse_model.load_state_dict(state_dict)
for param in mmse_model.parameters():
param.requires_grad = False
return mmse_model
ffhq_diffusion_model = "./guided_diffusion/iddpm_ffhq512_ema500000.pth"
mmse_model_ckpt = "./guided_diffusion/swinir_restoration512_L1.pth"
if not os.path.exists(ffhq_diffusion_model):
os.system(
"wget https://github.com/zsyOAOA/DifFace/releases/download/V1.0/iddpm_ffhq512_ema500000.pth -O ./guided_diffusion/iddpm_ffhq512_ema500000.pth"
)
if not os.path.exists(mmse_model_ckpt):
os.system(
"wget https://github.com/zsyOAOA/DifFace/releases/download/V1.0/swinir_restoration512_L1.pth -O ./guided_diffusion/swinir_restoration512_L1.pth"
)
def load_yaml(file_path: str) -> dict:
with open(file_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
model_config = './guided_diffusion/ffhq512_model_config.yaml'
diffusion_config = './guided_diffusion/diffusion_config.yaml'
model_config = load_yaml(model_config)
diffusion_config = load_yaml(diffusion_config)
models = {
'main_model': create_model(**model_config),
'mmse_model': create_swinir_model('./guided_diffusion/swinir_restoration512_L1.pth')
}
models['main_model'].eval()
models['mmse_model'].eval()
@torch.no_grad()
@spaces.GPU(duration=80)
def generate_reconstruction(degraded_face_img, K, T, iqa_metric, iqa_coef, loaded_indices):
assert iqa_metric in ['niqe', 'clipiqa+', 'topiq_nr-face']
diffusion_config['timestep_respacing'] = T
sampler = create_sampler(**diffusion_config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models['main_model'].to(device)
mmse_model = models['mmse_model'].to(device)
sample_fn = partial(sampler.p_sample_loop_blind_restoration, model=model, num_opt_noises=K,
eta=1.0, iqa_metric=iqa_metric, iqa_coef=iqa_coef)
if degraded_face_img is not None:
mmse_img = mmse_model(degraded_face_img).clip(0, 1) * 2 - 1
x_start = torch.randn(mmse_img.shape, device=device)
else:
mmse_img = None
x_start = torch.randn(1, 3, 512, 512, device=device)
restored_face, indices = sample_fn(x_start=x_start, mmse_img=mmse_img, loaded_indices=loaded_indices)
return restored_face, indices
def resize(img, size):
# From https://github.com/sczhou/CodeFormer/blob/master/facelib/utils/face_restoration_helper.py
h, w = img.shape[0:2]
scale = size / min(h, w)
h, w = int(h * scale), int(w * scale)
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
return cv2.resize(img, (w, h), interpolation=interp)
@torch.no_grad()
@spaces.GPU(duration=80)
def enhance_faces(img, face_helper, has_aligned, K, T, iqa_metric, iqa_coef, loaded_indices):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
face_helper.clean_all()
if has_aligned: # The inputs are already aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.input_img = resize(face_helper.input_img, 640)
face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=5)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
raise gr.Error("Could not identify any face in the image.")
if has_aligned and len(face_helper.cropped_faces) > 1:
raise gr.Error(
"You marked that the input image is aligned, but multiple faces were detected."
)
restored_faces = []
generated_indices = []
for i, cropped_face in enumerate(face_helper.cropped_faces):
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
cur_loaded_indices = loaded_indices[i] if loaded_indices is not None else None
output, indices = generate_reconstruction(
cropped_face_t,
K,
T,
iqa_metric,
iqa_coef,
cur_loaded_indices
)
restored_face = tensor2img(
output.to(torch.float32).squeeze(0), rgb2bgr=False, min_max=(-1, 1)
)
restored_face = restored_face.astype("uint8")
restored_faces.append(restored_face),
generated_indices.append(indices)
return restored_faces, generated_indices
@torch.no_grad()
@spaces.GPU()
def decompress_face(K, T, iqa_metric, iqa_coef, loaded_indices):
assert loaded_indices is not None
output, indices = generate_reconstruction(
None,
K,
T,
iqa_metric,
iqa_coef,
loaded_indices
)
restored_face = tensor2img(
output.to(torch.float32).squeeze(0), rgb2bgr=False, min_max=(-1, 1)
).astype("uint8")
return restored_face, loaded_indices
@torch.no_grad()
@spaces.GPU(duration=80)
def inference(
img,
T,
K,
iqa_metric,
iqa_coef,
aligned,
bitstream=None,
progress=gr.Progress(track_tqdm=True),
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
iqa_metric_to_pyiqa_name = {
'NIQE': 'niqe',
'TOPIQ': 'topiq_nr-face',
'CLIP-IQA': 'clipiqa+'
}
iqa_metric = iqa_metric_to_pyiqa_name[iqa_metric]
indices = load_numpy_from_binary_bitwise(bitstream, K, T, 'ffhq', T)
if indices is not None:
indices = indices.to(device)
if img is not None:
img = cv2.imread(img, cv2.IMREAD_COLOR)
h, w = img.shape[0:2]
if h > 4500 or w > 4500:
raise gr.Error("Image size too large.")
face_helper = FaceRestoreHelper(
1,
face_size=512,
crop_ratio=(1, 1),
det_model="retinaface_resnet50",
save_ext="png",
use_parse=True,
device=device,
model_rootpath=None,
)
x, indices = enhance_faces(
img, face_helper, aligned, K=K, T=T, iqa_metric=iqa_metric, iqa_coef=iqa_coef,
loaded_indices=indices,
)
else:
x, indices = decompress_face(
K=K, T=T, iqa_metric=iqa_metric, iqa_coef=iqa_coef, loaded_indices=indices,
)
torch.cuda.empty_cache()
if bitstream is None:
indices = [generate_binary_file(index.numpy(), K, T, 'ffhq') for index in indices]
return x, indices
return x