import spaces import torch import numpy as np import gradio as gr from util.file import generate_binary_file, load_numpy_from_binary_bitwise from latent_utils import generate_ours @torch.no_grad() @spaces.GPU(duration=80) def main(prompt, T, K, K_tilde, model_type='512x512', bitstream=None, avail_models=None, progress=gr.Progress(track_tqdm=True)): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") indices = load_numpy_from_binary_bitwise(bitstream, K, T, model_type, T - 1) if indices is not None: indices = indices.to(device) # model, _ = load_model(img_size_to_id[img_size], T, device, float16=True, compile=False) model = avail_models[model_type].to(device) model.device = device model.model.to(device=device) model.model.scheduler.device = device model.set_timesteps(T, device=device) with torch.no_grad(): x, indices = generate_ours(model, num_noises=K, num_noises_to_optimize=K_tilde, prompt=prompt, negative_prompt=None, indices=indices) x = (x / 2 + 0.5).clamp(0, 1) x = x.detach().cpu().squeeze().numpy() x = np.transpose(x, (1, 2, 0)) torch.cuda.empty_cache() if bitstream is None: indices = generate_binary_file(indices.numpy(), K, T, model_type) return x, indices return x