DHEIVER commited on
Commit
0da3f9c
·
verified ·
1 Parent(s): b302fdf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -61
app.py CHANGED
@@ -1,64 +1,33 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
+ import torch
4
+
5
+ # Carregando o modelo e o tokenizador
6
+ model_name = "xlm-roberta-base"
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ # Função para análise do texto bíblico
11
+ def analisar_texto_biblico(texto):
12
+ inputs = tokenizer(texto, return_tensors="pt", truncation=True, max_length=512)
13
+ outputs = model(**inputs)
14
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
15
+ predictions = torch.argmax(probabilities, dim=-1)
16
+
17
+ labels = ["Antigo Testamento", "Novo Testamento", "Não Bíblico"]
18
+ resultado = labels[predictions.item()]
19
+ confianca = probabilities[0][predictions.item()].item()
20
+
21
+ return f"Classificação: {resultado}\nConfiança: {confianca:.2f}"
22
+
23
+ # Interface Gradio
24
+ iface = gr.Interface(
25
+ fn=analisar_texto_biblico,
26
+ inputs=gr.Textbox(lines=5, label="Texto Bíblico"),
27
+ outputs=gr.Textbox(label="Análise"),
28
+ title="Análise de Texto Bíblico com XLM-RoBERTa",
29
+ description="Digite um trecho bíblico para análise."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  )
31
 
32
+ # Lançar a interface
33
+ iface.launch()