Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +53 -0
- model.py +47 -0
- requirements.txt +106 -0
- retinanet_best_model.pth +3 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from model import RetinaNet # Import your RetinaNet model definition
|
6 |
+
|
7 |
+
# Define the image transformation pipeline
|
8 |
+
image_transform = transforms.Compose([
|
9 |
+
transforms.Resize((224, 224)),
|
10 |
+
transforms.ToTensor(),
|
11 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
12 |
+
])
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
model = RetinaNet(num_classes=2).to(device)
|
17 |
+
model.load_state_dict(torch.load("retinanet_best_model.pth", map_location=device))
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
# Prediction function
|
21 |
+
def predict_image(image):
|
22 |
+
# Preprocess the image
|
23 |
+
img = Image.fromarray(image).convert('RGB') # Convert Gradio input to PIL Image
|
24 |
+
input_tensor = image_transform(img).unsqueeze(0).to(device)
|
25 |
+
|
26 |
+
# Perform inference
|
27 |
+
with torch.no_grad():
|
28 |
+
prediction = model(input_tensor.float())
|
29 |
+
sum_value = abs(torch.sum(prediction[0]))
|
30 |
+
p_true = abs(prediction[0][0])
|
31 |
+
p_false = abs(prediction[0][1])
|
32 |
+
|
33 |
+
# Interpret the prediction
|
34 |
+
if p_true > 0.7:
|
35 |
+
result = "Accepted"
|
36 |
+
confidence = float(p_true)
|
37 |
+
else:
|
38 |
+
result = "Rejected"
|
39 |
+
confidence = float(p_false)
|
40 |
+
|
41 |
+
return f"Result: {result}, Confidence: {confidence:.2f}"
|
42 |
+
|
43 |
+
# Create the Gradio interface
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# RetinaNet Model Prediction")
|
46 |
+
with gr.Row():
|
47 |
+
image_input = gr.Image(label="Upload Image", type="numpy")
|
48 |
+
output_text = gr.Textbox(label="Prediction Result")
|
49 |
+
predict_button = gr.Button("Predict")
|
50 |
+
predict_button.click(predict_image, inputs=image_input, outputs=output_text)
|
51 |
+
|
52 |
+
# Launch the app
|
53 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.utils.data import DataLoader, Dataset
|
6 |
+
from torchvision import transforms, datasets, models
|
7 |
+
|
8 |
+
# Define model
|
9 |
+
class RetinaNet(nn.Module):
|
10 |
+
def __init__(self, num_classes=2):
|
11 |
+
super(RetinaNet, self).__init__()
|
12 |
+
self.backbone = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
|
13 |
+
|
14 |
+
# Freeze backbone parameters
|
15 |
+
for param in self.backbone.parameters():
|
16 |
+
param.requires_grad = False
|
17 |
+
|
18 |
+
# Unfreeze later layers
|
19 |
+
for param in self.backbone.layer3.parameters():
|
20 |
+
param.requires_grad = True
|
21 |
+
for param in self.backbone.layer4.parameters():
|
22 |
+
param.requires_grad = False
|
23 |
+
|
24 |
+
# Modified classifier head
|
25 |
+
self.classifier = nn.Sequential(
|
26 |
+
nn.Linear(2048, 512),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Dropout(0.5),
|
29 |
+
nn.Linear(512, num_classes)
|
30 |
+
# nn.Sigmoid()
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
x = self.backbone.conv1(x)
|
35 |
+
x = self.backbone.bn1(x)
|
36 |
+
x = self.backbone.relu(x)
|
37 |
+
x = self.backbone.maxpool(x)
|
38 |
+
|
39 |
+
x = self.backbone.layer1(x)
|
40 |
+
x = self.backbone.layer2(x)
|
41 |
+
x = self.backbone.layer3(x)
|
42 |
+
x = self.backbone.layer4(x)
|
43 |
+
|
44 |
+
x = self.backbone.avgpool(x)
|
45 |
+
x = torch.flatten(x, 1)
|
46 |
+
x = self.classifier(x)
|
47 |
+
return x
|
requirements.txt
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.1.0
|
2 |
+
aiohappyeyeballs==2.4.6
|
3 |
+
aiohttp==3.11.12
|
4 |
+
aiosignal==1.3.2
|
5 |
+
astunparse==1.6.3
|
6 |
+
attrs==25.1.0
|
7 |
+
blinker==1.9.0
|
8 |
+
CacheControl==0.14.2
|
9 |
+
cachetools==5.5.1
|
10 |
+
certifi==2025.1.31
|
11 |
+
cffi==1.17.1
|
12 |
+
charset-normalizer==2.1.1
|
13 |
+
click==8.1.8
|
14 |
+
colorama==0.4.6
|
15 |
+
cryptography==44.0.1
|
16 |
+
datasets==3.2.0
|
17 |
+
dill==0.3.8
|
18 |
+
filelock==3.17.0
|
19 |
+
firebase-admin==6.6.0
|
20 |
+
Flask==3.1.0
|
21 |
+
Flask-Cors==5.0.0
|
22 |
+
flatbuffers==25.1.24
|
23 |
+
frozenlist==1.5.0
|
24 |
+
fsspec==2024.9.0
|
25 |
+
gast==0.6.0
|
26 |
+
google-api-core==2.24.1
|
27 |
+
google-api-python-client==2.161.0
|
28 |
+
google-auth==2.38.0
|
29 |
+
google-auth-httplib2==0.2.0
|
30 |
+
google-cloud-core==2.4.1
|
31 |
+
google-cloud-firestore==2.20.0
|
32 |
+
google-cloud-storage==3.0.0
|
33 |
+
google-crc32c==1.6.0
|
34 |
+
google-pasta==0.2.0
|
35 |
+
google-resumable-media==2.7.2
|
36 |
+
googleapis-common-protos==1.67.0
|
37 |
+
greenlet==3.1.1
|
38 |
+
grpcio==1.70.0
|
39 |
+
grpcio-status==1.70.0
|
40 |
+
h5py==3.12.1
|
41 |
+
httplib2==0.22.0
|
42 |
+
idna==3.10
|
43 |
+
itsdangerous==2.2.0
|
44 |
+
Jinja2==3.1.5
|
45 |
+
keras==3.8.0
|
46 |
+
libclang==18.1.1
|
47 |
+
Markdown==3.7
|
48 |
+
markdown-it-py==3.0.0
|
49 |
+
MarkupSafe==3.0.2
|
50 |
+
mdurl==0.1.2
|
51 |
+
ml-dtypes==0.4.1
|
52 |
+
mpmath==1.3.0
|
53 |
+
msgpack==1.1.0
|
54 |
+
multidict==6.1.0
|
55 |
+
multiprocess==0.70.16
|
56 |
+
namex==0.0.8
|
57 |
+
networkx==3.4.2
|
58 |
+
numpy==2.0.2
|
59 |
+
opencv-python==4.11.0.86
|
60 |
+
opt_einsum==3.4.0
|
61 |
+
optree==0.14.0
|
62 |
+
packaging==24.2
|
63 |
+
pandas==2.2.3
|
64 |
+
pillow==11.1.0
|
65 |
+
propcache==0.2.1
|
66 |
+
proto-plus==1.26.0
|
67 |
+
protobuf==5.29.3
|
68 |
+
psycopg2-binary==2.9.10
|
69 |
+
pyarrow==19.0.0
|
70 |
+
pyasn1==0.6.1
|
71 |
+
pyasn1_modules==0.4.1
|
72 |
+
pycparser==2.22
|
73 |
+
Pygments==2.19.1
|
74 |
+
PyJWT==2.10.1
|
75 |
+
pyparsing==3.2.1
|
76 |
+
python-dateutil==2.9.0.post0
|
77 |
+
pytz==2025.1
|
78 |
+
PyYAML==6.0.2
|
79 |
+
regex==2024.11.6
|
80 |
+
requests==2.32.3
|
81 |
+
rich==13.9.4
|
82 |
+
rsa==4.9
|
83 |
+
safetensors==0.5.2
|
84 |
+
setuptools==75.8.0
|
85 |
+
six==1.17.0
|
86 |
+
SQLAlchemy==2.0.38
|
87 |
+
sympy==1.13.1
|
88 |
+
tensorboard==2.18.0
|
89 |
+
tensorboard-data-server==0.7.2
|
90 |
+
tensorflow==2.18.0
|
91 |
+
tensorflow_intel==2.18.0
|
92 |
+
termcolor==2.5.0
|
93 |
+
tokenizers==0.21.0
|
94 |
+
torch==2.6.0
|
95 |
+
torchvision==0.21.0
|
96 |
+
tqdm==4.67.1
|
97 |
+
transformers==4.48.3
|
98 |
+
typing_extensions==4.12.2
|
99 |
+
tzdata==2025.1
|
100 |
+
uritemplate==4.1.1
|
101 |
+
urllib3==1.26.20
|
102 |
+
Werkzeug==3.1.3
|
103 |
+
wheel==0.45.1
|
104 |
+
wrapt==1.17.2
|
105 |
+
xxhash==3.5.0
|
106 |
+
yarl==1.18.3
|
retinanet_best_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cf5190eab09966edb71eb3cf8c67d358d37badb96ce21bd611901bdf5b8d0cc
|
3 |
+
size 106756882
|